Nonlinear Dynamic Response of a CC-RCC Combined Dam Structure under Oblique Incidence of Near-Fault Ground Motions
Abstract
:1. Introduction
2. Characteristics and Selection of Near-Fault Ground Motions
2.1. Characteristics of Near-Fault Ground Motions
2.2. Selection of Near-Fault Pulse and Non-Pulse Ground Motions
3. The Input Method of the Obliquely Incident P Wave
3.1. The Viscous-Spring Artificial Boundary
3.2. P Waves Input Method
3.3. Numerical Verification on the Input Method
4. CC-RCC Gravity Dam-Foundation Numerical Model
4.1. 3D Dam-Foundation Finite Element Model
4.2. Material Parameters and Loading
5. Results and Discussion
5.1. Horizontal Relative Displacements of the Dam Crest
5.2. Damage Distribution of Dam
5.3. Damage Analysis of Interface Structures
5.4. Summary of Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, J.G. Practical Manual for Hydroelectric Power; China Electric Power Press: Beijing, China, 2014. [Google Scholar]
- Yang, D.; Wang, W. Nonlocal period parameters of frequency content characterization for near-fault ground motions. Earthq. Eng. Struct. Dyn. 2012, 41, 1793–1811. [Google Scholar] [CrossRef]
- Shahbazi, S.; Karami, A.; Hu, J.W.; Mansouri, I. Seismic response of steel moment frames (SMFs) considering simultaneous excitations of vertical and horizontal components, including fling-step ground motions. Appl. Sci. 2019, 9, 2079. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Liu, C. Identification and representation of multi-pulse near-fault strong ground motion using adaptive wavelet transform. Appl. Sci. 2019, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wang, G. Effects of near-fault and far-fault ground motions on nonlinear dynamic response and seismic damage of concrete gravity dams. Soil Dyn. Earthq. Eng. 2013, 53, 217–229. [Google Scholar] [CrossRef]
- Wang, W.L.; Wang, T.T.; Su, J.J.; Lin, C.H.; Seng, C.R.; Huang, T.H. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi. Earthq. Tunn. Undergr. Sp. Technol. 2001, 16, 133–150. [Google Scholar] [CrossRef]
- Yashiro, K.; Kojima, Y.; Shimizu, M. Historical earthquake damage to tunnels in Japan and case studies of railway tunnels in the 2004 Niigataken-Chuetsu earthquake. Q. Rep. RTRI 2007, 48, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Z.; Gao, B.; Jiang, Y.J.; Yuan, S. Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake. Sci. China Ser. E Technol. Sci. 2009, 52, 546–558. [Google Scholar] [CrossRef]
- Assimaki, D.; Jeong, S. Ground-Motion observations at Hotel Montana during the M 7.0 2010 Haiti earthquake: Topography or soil amplification? Bull. Seismol. Soc. Am. 2013, 103, 2577–2590. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Bilotta, E.; Yuan, Y.; Yu, H.; Zhao, H. Experimental assessment of the effect of vertical earthquake motion on underground metro station. Appl. Sci. 2019, 9, 5182. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Zhou, Y.; Zhou, C.; Zou, D. Dynamic responses of concrete-faced rockfill dam due to different seismic motion input methods. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718804687. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.G.; Shi, P.X.; Zhao, C.G. Two-Dimensional in-plane seismic response of long-span bridges under oblique P-wave incidence. Bull. Earthq. Eng. 2019, 17, 1–27. [Google Scholar] [CrossRef]
- Huang, J.Q.; Du, X.L.; Jin, L.; Zhao, M. Impact of incident angles of P waves on the dynamic responses of long lined tunnels. Earthq. Eng. Struct. Dyn. 2016, 45, 2435–2454. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, M.; Du, X. Non-Linear seismic responses of tunnels within normal fault ground under obliquely incident P waves. Tunn. Undergr. Sp. Technol. 2017, 61, 26–39. [Google Scholar] [CrossRef]
- Mridha, S.; Maity, D. Experimental investigation on nonlinear dynamic response of concrete gravity dam-reservoir system. Eng. Struct. 2014, 80, 289–297. [Google Scholar] [CrossRef]
- Gharibdoust, A.; Aldemir, A.; Binici, B. Seismic behaviour of roller compacted concrete dams under different base treatments. Struct. Infrastruct. Eng. 2019, 1–12. [Google Scholar] [CrossRef]
- Li, M.C.; Zhang, M.X.; Hu, Y.; Zhang, J.R. Mechanical properties investigation of high-fluidity impermeable and anti-cracking concrete in high roller-compacted concrete dams. Constr. Build. Mater. 2017, 156, 861–870. [Google Scholar] [CrossRef]
- Zhang, M.X.; Li, M.C.; Shen, Y.; Ren, Q.B.; Zhang, J.R. Multiple mechanical properties prediction of hydraulic concrete in the form of combined damming by experimental data mining. Constr. Build. Mater. 2019, 207, 661–671. [Google Scholar] [CrossRef]
- Bayraktar, A.; Altunısık, A.C.; Sevim, B.; Kartal, M.E.; Turker, T. Near-Fault ground motion effects on the nonlinear response of dam-reservoir-foundation systems. Struct. Eng. Mech. 2008, 28, 411–442. [Google Scholar] [CrossRef]
- Bayraktar, A.; Altunisik, A.C.; Sevim, B.; Kartal, M.E.; Türker, T.; Bilici, Y. Comparison of near-and far-fault ground motion effect on the nonlinear response of dam-reservoir-foundation systems. Nonlinear Dyn. 2009, 58, 655–673. [Google Scholar] [CrossRef]
- Bayraktar, A.; Turker, T.; Akkose, M.; Ates, S. The effect of reservoir length on seismic performance of gravity dams to near-and far-fault ground motions. Nat. Hazards 2010, 52, 257–275. [Google Scholar] [CrossRef]
- Akkose, M.; Simsek, E. Non-Linear seismic response of concrete gravity dams to near-fault ground motions including dam-water-sediment-foundation interaction. Appl. Math. Model. 2010, 34, 3685–3700. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, S.; Wang, C.; Yu, M. Seismic performance evaluation of dam-reservoir foundation systems to near-fault ground motions. Nat. Hazards 2014, 72, 651–674. [Google Scholar] [CrossRef]
- Altunisik, A.C.; Sesli, H.; Hüsem, M.; Akköse, M. Performance evaluation of gravity dams subjected to near- and far-fault ground motion using Euler approaches. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019, 43, 297–325. [Google Scholar] [CrossRef]
- Yazdani, Y.; Alembagheri, M. Seismic vulnerability of gravity dams in near-fault areas. Soil Dyn. Earthq. Eng. 2017, 102, 15–24. [Google Scholar] [CrossRef]
- Yazdani, Y.; Alembagheri, M. Nonlinear seismic response of a gravity dam under near-fault ground motions and equivalent pulses. Soil Dyn. Earthq. Eng. 2017, 92, 621–632. [Google Scholar]
- Pang, R.; Xu, B.; Kong, X.; Zhou, Y.; Zou, D. Seismic performance evaluation of high CFRD slopes subjected to near-fault ground motions based on generalized probability density evolution method. Eng. Geol. 2018, 246, 391–401. [Google Scholar] [CrossRef]
- Khan, B.L.; Azeem, M.; Usman, M.; Farooq, S.H.; Hanif, A.; Fawad, M. Effect of near and far Field Earthquakes on performance of various base isolation systems. Procedia Struct. Integr. 2019, 18, 108–118. [Google Scholar] [CrossRef]
- Gorai, S.; Maity, D. Seismic response of concrete gravity dams under near field and far field ground motions. Eng. Struct. 2019, 196, 109292. [Google Scholar] [CrossRef]
- Schauer, M.; Rodriguez, G.R. A coupled FEM-SBFEM approach for soil-structure-interaction analysis using non-matching meshes at the near-field far-field interface. Soil Dyn. Earthq. Eng. 2019, 121, 466–479. [Google Scholar] [CrossRef]
- Xu, H.; Du, X.; Zhao, M.; Wang, J. Effect of oblique incidence of seismic waves on seismic responses of high arch dam. J. Hydroelectr. Eng. 2011, 30, 159–165. (In Chinese) [Google Scholar]
- Yuan, J.W.; Du, C.; Liu, Z. Time-Domain seismic response for gravity dam to obliquely incident and seismic waves. J. Vib. Shock 2011, 30, 120–126. [Google Scholar]
- Chen, L.; Zhang, L. A seismic wave oblique incidence method and the application in gravity DAM seismic research. J. Earthq. Tsunami 2014, 8, 1450011. [Google Scholar] [CrossRef]
- Li, M.C.; Zhang, J.W.; Zhang, M.X.; Min, Q.L.; Shi, B.W. Plastic damage response analysis of concrete gravity dam due to obliquely incident seismic waves. J. Hydraul. Eng. 2019, 50, 1326–1338, 1349. (In Chinese) [Google Scholar]
- Pacific Earthquake Engineering Research Center (PEER). PEER Strong Motion Database. Available online: http://ngawest2.berkeley.edu/search.html (accessed on 28 January 2020).
- Somerville, P.G.; Smith, N.F.; Graves, R.W.; Abrahamson, N.A. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismol. Res. Lett. 1997, 68, 199–222. [Google Scholar] [CrossRef]
- Wang, G.Q.; Zhou, X.Y.; Zhang, P.Z.; Igel, H. Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan, earthquake. Soil Dyn. Earthq. Eng. 2002, 22, 73–96. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Xiang, C.L.; Chen, Y.L.; Cheng, Q.G.; Xiao, L.; Yu, P.C.; Chang, Z.W. Permanent displacement models of earthquake-induced landslides considering near-fault pulse-like ground motions. J. Mt. Sci. 2019, 16, 1244–1257. [Google Scholar] [CrossRef]
- Kausel, E. Local transmitting boundaries. ASCE J. Eng. Mech. 1988, 114, 1011–1027. [Google Scholar] [CrossRef]
- Wolf, J.P.; Song, C. Finite Element Modelling of Unbounded Media; John Wiley & Sons: Chichester, UK, 1996. [Google Scholar]
- Tsynkov, S.V. Numerical solution of problems on unbounded domains. A review. Appl. Numer. Math. 1998, 27, 465–532. [Google Scholar] [CrossRef]
- Deeks, A.J.; Randolph, M.F. Axisymmetric time-domain transmitting boundaries. ASCE J. Eng. Mech. 1994, 120, 25–42. [Google Scholar] [CrossRef]
- Liu, J.B.; Du, Y.X.; Du, X.L.; Wang, Z.Y.; Wu, J. 3D viscous-spring artificial boundary in time domain. Earthq. Eng. Eng. Vib. 2006, 5, 93–102. [Google Scholar] [CrossRef]
- Du, X.L.; Zhao, M. A local time-domain transmitting boundary for simulating cylindrical elastic wave propagation in infinite media. Soil Dyn. Earthq. Eng. 2010, 30, 937–946. [Google Scholar] [CrossRef]
- Liu, J.B.; Tan, H.; Bao, X.; Wang, D.Y.; Li, S.T. Seismic wave input method for three-dimensional soil-structure dynamic interaction analysis based on the substructure of artificial boundaries. Earthq. Eng. Eng. Vib. 2019, 18, 747–758. [Google Scholar] [CrossRef]
- Zarzalejos, J.M.; Aznárez, J.J.; Padrón, L.A.; Maeso, O. Influences of type of wave and angle of incidence on seismic bending moments in pile foundations. Earthq. Eng. Struct. Dyn. 2014, 43, 41–59. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.G. Research on the Mechanism of Seismic Wave Input about High Rockfill Dam. Master’s Thesis, Dalian University of Technology, Dalian, China, 2009. [Google Scholar]
- Wang, G.H.; Wang, Y.X.; Lu, W.B.; Yu, M.; Wang, C. Deterministic 3D seismic damage analysis of Guandi concrete gravity dam: A case study. Eng. Struct. 2017, 148, 263–276. [Google Scholar] [CrossRef]
- Wang, R.K.; Chen, L.; Zhang, C. Seismic design of Xiluodu ultra-high arch dam. Water Sci. Eng. 2018, 11, 288–301. [Google Scholar] [CrossRef]
- Hall, J.F. Problems encountered from the use (or misuse) of Rayleigh damping. Earthq. Eng. Struct. Dyn. 2006, 35, 525–545. [Google Scholar] [CrossRef]
- Alembagheri, M.; Ghaemian, M. Damage assessment of a concrete arch dam through nonlinear incremental dynamic analysis. Soil Dyn. Earthq. Eng. 2013, 44, 127–137. [Google Scholar] [CrossRef]
- Zhang, S.R.; Wang, G.H.; Pang, B.H.; Du, C.B. The effects of strong motion duration on the dynamic response and accumulated damage of concrete gravity dam. Soil Dyn. Earthq. Eng. 2013, 45, 112–124. [Google Scholar] [CrossRef]
Earthquake | #1 | #2 | #3 | |||
---|---|---|---|---|---|---|
No. | 1 | 2 | 3 | 4 | 5 | 6 |
Ground motion types | Pulse-like | Non-pulse | Pulse-like | Non-pulse | Pulse-like | Non-pulse |
Station name | PST225 | WP1046 | EDA270 | |||
Rjb (km) | 0.95 | 2.11 | 5.09 | |||
Magnitude | 6.54 | 6.69 | 6.53 | |||
Duration (s) | 22.31 | 22.31 | 24.99 | 24.99 | 39.10 | 39.10 |
PGA(g) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
PGV(cm/s) | 61.81 | 23.58 | 56.33 | 29.45 | 52.89 | 21.27 |
PGV/PGA(s) | 0.315 | 0.120 | 0.287 | 0.150 | 0.270 | 0.108 |
Materials | Elasticity Modulus (GPa) | Poisson’s Ratio | Density (kg/m3) |
---|---|---|---|
II-Conventional concrete | 42.6 | 0.167 | 2489 |
I-2-Conventional concrete | 44.3 | 0.167 | 2487 |
Roller compacted concrete | 47.4 | 0.167 | 2476 |
Foundation rock | 30.4 | 0.170 | 2800 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, M.; Li, M.; Min, Q.; Shi, B.; Song, L. Nonlinear Dynamic Response of a CC-RCC Combined Dam Structure under Oblique Incidence of Near-Fault Ground Motions. Appl. Sci. 2020, 10, 885. https://doi.org/10.3390/app10030885
Zhang J, Zhang M, Li M, Min Q, Shi B, Song L. Nonlinear Dynamic Response of a CC-RCC Combined Dam Structure under Oblique Incidence of Near-Fault Ground Motions. Applied Sciences. 2020; 10(3):885. https://doi.org/10.3390/app10030885
Chicago/Turabian StyleZhang, Jiawen, Mengxi Zhang, Mingchao Li, Qiaoling Min, Bowen Shi, and Lingguang Song. 2020. "Nonlinear Dynamic Response of a CC-RCC Combined Dam Structure under Oblique Incidence of Near-Fault Ground Motions" Applied Sciences 10, no. 3: 885. https://doi.org/10.3390/app10030885
APA StyleZhang, J., Zhang, M., Li, M., Min, Q., Shi, B., & Song, L. (2020). Nonlinear Dynamic Response of a CC-RCC Combined Dam Structure under Oblique Incidence of Near-Fault Ground Motions. Applied Sciences, 10(3), 885. https://doi.org/10.3390/app10030885