Effect of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Bacteria (PGPR) Inoculations on Elaeagnus angustifolia L. in Saline Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil and Plant Treatment
2.3. Microbial Inoculum
2.4. Plant Growth Conditions and Experimental Design
2.5. Parameter Measurements
2.5.1. Plant Biomass, Organ Morphology, and AMF Colonization Rate
2.5.2. Photosynthesis Measurement
2.5.3. Determination of Soil Enzymes
2.6. Statistical Analysis
2.7. Estimation of Salt Tolerance and Soil Enzyme Activities
3. Results
3.1. Effects on Biomass Accumulation and Arbuscular Mycorrhizal Fungi (AMF) Colonization Rate
3.2. Effects on Morphological Characteristics of Aboveground Organs
3.3. Effects on Morphological Characteristics of Roots
3.4. Effects on Photosynthesis
3.5. Effects on Soil Enzymes
3.6. Salt Tolerance Assessment
3.7. Soil Fertility Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada, B.; Aroca, R.; Azcón-Aguilar, C.; Barea, J.M.; Ruiz-Lozano, J.M. Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions. Plant Soil 2013, 370, 175–185. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munns, R.; Gilliham, M. Salinity tolerance of crops—What is the cost? New Phytol. 2015, 208, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Kosová, K.; Vítámvás, P.; Urban, M.O.; Prášil, I.T. Plant proteome responses to salinity stress–comparison of glycophytes and halophytes. Funct. Plant Biol. 2013, 40, 775–786. [Google Scholar] [CrossRef]
- Habiba, U.; Anwarul, A.M.; Shaw, R.; Hassan, A.W.R. Salinity-Induced Livelihood Stress in Coastal Region of Bangladesh. In Community, Environment and Disaster Risk; Emerald Publishers: Bingley, UK, 2013. [Google Scholar]
- Anik, A.R.; Ranjan, R.; Ranganathan, T. Estimating the impact of salinity stress on livelihood choices and incomes in Rural Bangladesh. J. Int. Dev. 2018, 30, 1414–1438. [Google Scholar] [CrossRef]
- Rubin, R.L.; van Groenigen, K.J.; Hungate, B.A. Plant growth promoting rhizobacteria are more effective under drought: A meta-analysis. Plant Soil 2017, 416, 309–323. [Google Scholar] [CrossRef]
- Ilangumaran, G.; Smith, D.L. Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective. Front. Plant Sci. 2017, 8, 1768. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Boughattas, S.; Hu, S.; Oh, S.-H.; Sa, T. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 2014, 24, 611–625. [Google Scholar] [CrossRef]
- Qian, T.; Tsunekawa, A.; Peng, F.; Masunaga, T.; Wang, T.; Li, R. Derivation of salt content in salinized soil from hyperspectral reflectance data: A case study at Minqin Oasis, Northwest China. J. Arid Land 2019, 11, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.H.; Zong, L.; Buonanno, M.; Xue, X.; Wang, T.; Tedeschi, A. Impact of saline water irrigation on yield and quality of melon (Cucumis melo cv. Huanghemi) in northwest China. Eur. J. Agron. 2012, 43, 68–76. [Google Scholar] [CrossRef]
- Tedeschi, A.; Zong, L.; Huang, C.H.; Vitale, L.; Volpe, M.G.; Xue, X. Effect of salinity on growth parameters, soil water potential and ion composition in Cucumis melo cv. Huanghemi in North-Western China. J. Agron. Crop Sci. 2016, 203, 41–55. [Google Scholar] [CrossRef]
- Hui, H.; Tong, Q.; Feng, Z.D.; Chen, X.; Huang, A.; Youhao, E.; Gao, W. Study on salt land changes in Minqin Oasis, Northwest China. Proc. SPIE 2006, 6199. [Google Scholar] [CrossRef]
- Qian, T.; Tsunekawa, A.; Masunaga, T.; Wang, T. Analysis of the spatial variation of soil salinity and its causal factors in China’s Minqin Oasis. Math. Probl. Eng. 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, J.; Yang, X.; Wu, H.; Wei, Q.; Wei, H.; Zhang, H. Growth performance, organ-level ionic relations and organic osmoregulation of Elaeagnus angustifolia in response to salt stress. PLoS ONE 2018, 13, e0191552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farzaei, M.H.; Bahramsoltani, R.; Abbasabadi, Z.; Rahimi, R. A comprehensive review on phytochemical and pharmacological aspects of Elaeagnus angustifolia L. J. Pharm. Pharmacol. 2015, 67, 1467–1480. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Tang, M. Arbuscular mycorrhizal fungi diversity associated with two halophytes Lycium barbarum L. and Elaeagnus angustifolia L. in Ningxia, China. Arch. Agron. Soil Sci. 2017, 63, 796–806. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, X.; Li, G.; Qin, P. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol. Fertil. Soils 2011, 47, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Folli-Pereira, M.D.S.; Meira-Haddad, L.S.A.; Kasuya, M.C.M. Plant-microorganism interactions: Effects on the tolerance of plants to biotic and abiotic stresses. In Crop Improvement: New Approaches and Modern Techniques; Springer: Berlin, Germany, 2013; pp. 209–239. [Google Scholar]
- Yang, X.; Yu, H.; Zhang, T.; Guo, J.; Zhang, X. Arbuscular mycorrhizal fungi improve the antioxidative response and the seed production of Suaedoideae species Suaeda physophora Pall. under salt stress. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Puente, E.O.R.; Prabhaharan, R.; Amador, B.M.; Espinoza, F.R.; Puente, M.; Cepeda, R.D.V. Ameliorative effects of salt resistance on physiological parameters in the halophyte Salicornia bigelovii torr. with plant growth-promoting rhizobacteria. Afr. J. Biotechnol. 2013, 12, 5278–5284. [Google Scholar]
- Bharti, N.; Barnawal, D.; Maji, D.; Kalra, A. Halotolerant PGPRs prevent major shifts in indigenous microbial community structure under salinity stress. Microb. Ecol. 2015, 70, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Peng, F.; Xue, X.; You, Q.; Zhang, W.; Wang, T.; Huang, C. The growth promotion of two salt-tolerant plant groups with PGPR inoculation: A meta-analysis. Sustainability 2019, 11, 378. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, M.; Chanratana, M.; Kim, K.; Seshadri, S.; Sa, T. Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress–A meta-analysis. Front. Plant Sci. 2019, 16, 457. [Google Scholar] [CrossRef] [PubMed]
- Egamberdieva, D.; Wirth, S.; Jabborova, D.; Räsänen, L.A.; Liao, H. Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. J. Plant Interact. 2017, 12, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Ghazanfar, B.; Cheng, Z.; Cuinan, W.U.; Liu, H.; Hezi, L.I.; Rehman, R.N.U.; Ahmad, I.; Khan, A.R. Glomus etunicatum root inoculation and foliar application of acetyl salicylic acid induced NaCl tolerance by regulation of NaCl & LeNHXL gene expression and improved photosynthetic performance in tomato seedlings. Pak. J. Bot. 2016, 48, 1209–12117. [Google Scholar]
- Islam, F.; Yasmeen, T.; Arif, M.S.; Ali, S.; Ali, B.; Hameed, S.; Zhou, W. Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul. 2016, 80, 23–36. [Google Scholar] [CrossRef]
- Xun, F.; Xie, B.; Liu, S.; Guo, C. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ. Sci. Pollut. Res. 2015, 22, 598–608. [Google Scholar] [CrossRef]
- Gong, Z.; Zhang, G.; Chen, Z. Development of Soil Classification in China. In Soil Classification: A Global Desk Reference; Eswaran, H., Ahrens, R., Rice, T.J., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 101–127. [Google Scholar]
- Soil Survey Staff, USDA. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Natural Resource Conservation Service, Agricultural Handbook No. 436; U.S. Government Printing Office: Washington, DC, USA, 1999; pp. 414–417.
- Garg, N.; Chandel, S. The effects of salinity on nitrogen fixation and trehalose metabolism in mycorrhizal Cajanus cajan (L.) Mill sp. Plants. J. Plant Growth Regul. 2011, 30, 490–503. [Google Scholar] [CrossRef]
- Liu, S.; Hao, H.; Lu, X.; Zhao, X.; Wang, Y.; Zhang, Y.; Xie, Z.; Wang, R. Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.-T.; Zhao, X.; Shang, Q.-H.; Wang, Y.; Guo, Z.-H.; Zhang, Y.-B.; Xie, Z.-K.; Wang, R.-Y. Comparative digital gene expression analysis of the Arabidopsis response to volatiles emitted by Bacillus amyloliquefaciens. PLoS ONE 2016, 11, e0158621. [Google Scholar] [CrossRef] [Green Version]
- Weremijewicz, J.; Janos, D.P. Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses. Mycorrhiza 2018, 28, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.-H.; Chen, M.; Song, J.; Wanga, B.S. Increase in aquaporin activity is involved in leaf succulence of the euhalophyte Suaeda salsa under salinity. Plant Sci. 2009, 176, 200–205. [Google Scholar] [CrossRef]
- Han, Y.; Wang, W.; Sun, J.; Ding, M.; Zhao, R.; Deng, S.; Wang, F.; Hu, Y.; Wang, Y.; Lu, Y.; et al. Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. J. Exp. Bot. 2013, 64, 4225–4238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poorter, H.; Ryser, P. The limits to leaf and root plasticity: What is so special about specific root length? New Phytol. 2015, 206, 1188–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannetti, M.; Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Sheng, M.; Tang, M.; Chen, H.; Yang, B.; Zhang, F.; Huang, Y. Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Rev. Can. Microbiol. 2009, 55, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Huang, C.; Peng, F.; Xue, X.; Wang, T. Effect of salt stress on photosynthesis and related physiological characteristics of Lycium ruthenicum Murr. Acta Agric. Scand. Sect. B Soil Plant Sci. 2017, 67, 680–692. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, L.; Wang, Z.; Liu, L.; Zhang, P.; Sun, J.; Wang, B.; Song, G.; Li, X. Changes in functional gene structure and metabolic potential of the microbial community in biological soil crusts along a revegetation chronosequence in the tengger desert. Soil Biol. Biochem. 2018, 126, 40–48. [Google Scholar] [CrossRef]
- Kandeler, E.; Tscherko, D.; Spiegel, H. Long-term monitoring of microbial biomass, N mineralization and enzyme activities of a Chernozem under different tillage management. Biol. Fertil. Soils 1999, 28, 343–351. [Google Scholar] [CrossRef]
- Trasar-Cepeda, C.; Camiña, F.; Leirós, M.C.; Gil-Sotres, F. An improved method to measure catalase activity in soils. Soil Biol. Biochem. 1999, 31, 483–485. [Google Scholar] [CrossRef]
- Huang, K.; Dai, X.; Xu, Y.; Dang, S.; Shi, T.; Sun, J.; Wang, K. Relation between level of autumn dormancy and salt tolerance in lucerne (Medicago sativa). Crop Pasture Sci. 2018, 69, 194–204. [Google Scholar] [CrossRef]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Himabindu, Y.; Chakradhar, T.; Reddy, M.C.; Kanygin, A.; Redding, K.E.; Chandrasekhar, T. Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ. Exp. Bot. 2016, 124, 39–63. [Google Scholar] [CrossRef] [Green Version]
- Heijden, M.G.A.V.D.; Bardgett, R.D.; Straalen, N.M.V. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, S.; Mishra, S. Effect of alkalinity on growth performance of Jatropha curcas inoculated with PGPR and AM fungi. J. Phycol. 2009, 3, 177–184. [Google Scholar]
- Hidri, R.; Barea, J.M.; Mahmoud, M.B.; Abdelly, C.; Azcón, R. Impact of microbial inoculation on biomass accumulation by Sulla carnosa provenances, and in regulating nutrition, physiological and antioxidant activities of this species under non-saline and saline conditions. J. Plant Physiol. 2016, 201, 28–41. [Google Scholar] [CrossRef]
- Bharti, N.; Barnawal, D.; Shukla, S.; Tewari, S.K.; Katiyar, R.S.; Kalra, A. Integrated application of Exiguobacterium oxidotolerans, Glomus fasciculatum, and vermicompost improves growth, yield and quality of Mentha arvensis in salt-stressed soils. Ind. Crops Prod. 2016, 83, 717–728. [Google Scholar] [CrossRef]
- Hemashenpagam, N.; Selvaraj, T. Effect of arbuscular mycorrhizal (AM) fungus and plant growth promoting rhizomicroorganisms (PGPR). J. Environ. Biol. 2011, 32, 579–583. [Google Scholar]
- Vogelsang, K.M.; Reynolds, H.L.; Bever, J.D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol. 2006, 172, 554–562. [Google Scholar] [CrossRef]
- Piernik, A.; Hrynkiewicz, K.; Wojciechowska, A.; Szymanska, S.; Lis, M.; Muscolo, A. Effect of halotolerant endophytic bacteria isolated from salicornia europaea L. on the growth of fodder beet (Beta vulgaris L.) under salt stress. Arch. Agron. Soil Sci. 2017, 63, 1404–1418. [Google Scholar] [CrossRef]
- Patel, D.; Jha, C.K.; Tank, N.; Saraf, M. Growth enhancement of chickpea in saline soils using plant growth-promoting rhizobacteria. J. Plant Growth Regul. 2012, 31, 53–62. [Google Scholar] [CrossRef]
- Niu, S.-Q.; Li, H.-R.; Paré, P.W.; Aziz, M.; Wang, S.-M.; Shi, H.; Li, J.; Han, Q.-Q.; Guo, S.-Q.; Li, J.; et al. Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant Soil 2016, 407, 217–230. [Google Scholar] [CrossRef]
- Rewald, B.; Shelef, O.; Ephrath, J.E. Adaptive Plasticity of Salt-Stressed Root Systems. In Ecophysiology and Responses of Plants under Salt Stress; Springer: New York, NY, USA, 2013; pp. 169–201. [Google Scholar]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Echeverria, M.; Scambato, A.A.; Sannazzaro, A.I.; Maiale, S.; Ruiz, O.A.; Menéndez, A.B. Phenotypic plasticity with respect to salt stress response by Lotus glaber: The role of its AM fungal and rhizobial symbionts. Mycorrhiza 2008, 18, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Brundrett, M. Mycorrhizas in natural Ecosystems. Adv. Ecol. Res. 1991, 21, 171–313. [Google Scholar]
- Zou, Y.N.; Liang, Y.C.; Wu, Q.S. Mycorrhizal and non-mycorrhizal responses to salt stress in Trifoliate Orange: Plant growth, root architecture and soluble sugar accumulation. Int. J. Agric. Biol. 2013, 15, 565–569. [Google Scholar]
- Wu, Q.S.; Zou, Y.N.; He, X.H. Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol. Plant. 2010, 32, 297–304. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Gao, Z.; Liu, W.; Wang, Q. Effect of salt on seedlings biomass of two varieties of Elaeagnus spp. China For. Sci. Technol. 2010, 24, 25–28. [Google Scholar]
- Brundrett, M.C. Coevolution of roots and mycorrhizas of land plants. New Phytol. 2010, 154, 275–304. [Google Scholar] [CrossRef]
- Dodd, I.C.; Perez-Alfocea, F. Microbial amelioration of crop salinity stress. J. Exp. Bot. 2012, 63, 3415–3428. [Google Scholar] [CrossRef] [Green Version]
- Hodge, A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytol. 2004, 162, 9–24. [Google Scholar] [CrossRef]
- Bano, A.; Fatima, M. Salt tolerance in Zea mays L. following inoculation with Rhizobium and Pseudomonas. Biol. Fertil. Soils 2009, 45, 405–413. [Google Scholar] [CrossRef]
- Evelin, H.; Giri, B.; Kapoor, R. Contribution of Glomus intraradices, inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 2012, 22, 204–217. [Google Scholar] [CrossRef] [PubMed]
- Murkute, A.A.; Sharma, S.; Singh, S.K. Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hortic. Sci. UZPI Czech Repub. 2006, 33, 70–76. [Google Scholar] [CrossRef]
- Campanelli, A.; Ruta, C.; Mastro, G.; Morone-Fortunato, I. The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago satival Var. Icon. Symbiosis 2013, 59, 65–76. [Google Scholar] [CrossRef]
- Ciftci, V.; Turkmen, O.; Erdinc, C.; Sensoy, S. Effects of different arbuscular mycorrhizal fungi (AMF) species on some bean (Phaseolus vulgaris L.) cultivars grown in salty conditions. Afr. J. Agric. Res. 2010, 5, 3408–3416. [Google Scholar]
- Stella, L.; Antonio, S.; Michele, P.; Teodoro, D.T.; Adriano, S. Abscisic acid root and leaf concentration in relation to biomass partitioning in salinized tomato plants. J. Plant Physiol. 2012, 169, 226–233. [Google Scholar]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Al-Karaki, G.N.; Rusan, R.H.M. Response of two cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 2001, 11, 43–47. [Google Scholar] [CrossRef]
- Elhindi, K.M.; El-Din, A.S.; Elgorban, A.M. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J. Biol. Sci. 2017, 24, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Wang, Y.; Sun, S.; Mu, C.; Yan, X. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci. Total Environ. 2017, 576, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.Q.; Tang, M.; Zhang, H.Q. Arbuscular mycorrhizal fungi enhanced the growth, photosynthesis, and calorific value of black locust under salt stress. Photosynthetica 2017, 55, 378–385. [Google Scholar] [CrossRef]
- Ahmad, P.; Azooz, M.M.; Prasad, M.N.V. Ecophysiology and Responses of Plants under Salt Stress; Springer: Berlin, Germany, 2013. [Google Scholar]
- De-Bashan, L.E.; Hernandez, J.P.; Bashan, Y. The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—A comprehensive evaluation. Appl. Soil Ecol. 2012, 61, 171–189. [Google Scholar] [CrossRef]
- Rietz, D.N.; Haynes, R.J. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem. 2003, 35, 845–854. [Google Scholar] [CrossRef]
- Ash, C. Fungi help trees hunt for food. Science 2016, 353, 661. [Google Scholar] [CrossRef] [Green Version]
Parameters | C | A | P | AP | W |
---|---|---|---|---|---|
LDM | 0 | 1 | 0.2953 | 0.53 | 0.0737 |
SDM | 0 | 1 | 0.2452 | 0.4141 | 0.094 |
RDM | 0 | 1 | 0.4084 | 0.6642 | 0.0803 |
BN | 0 | 0.8696 | 0.4348 | 1 | 0.047 |
BSD | 0 | 1 | 0.2873 | 0.7562 | 0.0269 |
PH | 0 | 1 | 0.3661 | 0.5923 | 0.0306 |
LN | 0 | 1 | 0.3933 | 0.6917 | 0.0594 |
TLA | 0 | 1 | 0.3384 | 0.5892 | 0.0761 |
RL | 0 | 1 | 0.2436 | 0.6783 | 0.0243 |
RPA | 0.1513 | 1 | 0 | 0.9095 | 0.0375 |
RSA | 0.1625 | 1 | 0 | 0.9765 | 0.0363 |
RAD | 0 | 0.8962 | 0.3538 | 1 | 0.0345 |
RV | 0 | 1 | 0.3047 | 0.4537 | 0.064 |
RTN | 0 | 0.9729 | 0.3531 | 1 | 0.0274 |
Pn | 0 | 1 | 0.1293 | 0.4327 | 0.0633 |
Gs | 0 | 1 | 0.1325 | 0.3356 | 0.0977 |
Tr | 0 | 1 | 0.0974 | 0.3323 | 0.0922 |
CE | 0.6827 | 1 | 0 | 0.4585 | 0.0347 |
D | 0.035262 | 0.989448 | 0.243499 | 0.586412 | |
Sequence | 4 | 1 | 3 | 2 |
Treatment | C | A | P | AP | W |
---|---|---|---|---|---|
CAT | 0 | 1 | 0.6989 | 0.5223 | 0.064 |
AKP | 0 | 1 | 0.6345 | 0.7171 | 0.1514 |
SC | 0 | 0.5144 | 0.1817 | 1 | 0.3289 |
UE | 0 | 1 | 0.1885 | 0.3396 | 0.4556 |
D | 0 | 0.8402 | 0.2864 | 0.6256 | |
Sequence | 4 | 1 | 3 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Huang, C.; Peng, F.; Zhang, W.; Luo, J.; Ma, S.; Xue, X. Effect of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Bacteria (PGPR) Inoculations on Elaeagnus angustifolia L. in Saline Soil. Appl. Sci. 2020, 10, 945. https://doi.org/10.3390/app10030945
Pan J, Huang C, Peng F, Zhang W, Luo J, Ma S, Xue X. Effect of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Bacteria (PGPR) Inoculations on Elaeagnus angustifolia L. in Saline Soil. Applied Sciences. 2020; 10(3):945. https://doi.org/10.3390/app10030945
Chicago/Turabian StylePan, Jing, Cuihua Huang, Fei Peng, Wenjuan Zhang, Jun Luo, Shaoxiu Ma, and Xian Xue. 2020. "Effect of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Bacteria (PGPR) Inoculations on Elaeagnus angustifolia L. in Saline Soil" Applied Sciences 10, no. 3: 945. https://doi.org/10.3390/app10030945
APA StylePan, J., Huang, C., Peng, F., Zhang, W., Luo, J., Ma, S., & Xue, X. (2020). Effect of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Bacteria (PGPR) Inoculations on Elaeagnus angustifolia L. in Saline Soil. Applied Sciences, 10(3), 945. https://doi.org/10.3390/app10030945