Broadband Generalized Sidelobe Canceler Beamforming Applied to Ultrasonic Imaging
Abstract
:1. Introduction
2. Background
2.1. Non-Adaptive Beamforming
2.2. Generalized Sidelobe Canceler
3. Proposed Method
4. Results
4.1. Simulated Point Targets
4.2. Circular Cyst Experiments
4.3. Plane Wave Emission Test
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Synnevag, J.F.; Austeng, A.; Holm, S. Benefits of minimum-variance beamforming in medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 1868–1879. [Google Scholar] [CrossRef] [PubMed]
- Bottenus, N.; Byram, B.C.; Dahl, J.J.; Trahey, G.E. Synthetic aperture focusing for short- Lag spatial coherence imaging. IEEE Trans. Ultason. Ferroelectr. Freq. Control 2013, 60, 1816–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, W.; Wang, Y.; Yu, J. Ultrasound harmonic enhanced imaging using eigenspace-based coherence factor. Ultrasonics 2016, 72, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, X.; Wang, Y.; Chen, X.; Yu, D. Forward-backward generalized sidelobe canceler beamforming applied to medical ultrasound imaging. AIP Adv. 2017, 7, 015201. [Google Scholar] [CrossRef] [Green Version]
- Sakhaei, S.M. A decimated minimum variance beamformer applied to ultrasound imaging. Ultrasonics 2015, 59, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Hyun, D.; Abou-Elkacem, L.; Perez, V.A.; Chowdhury, S.M.; Willmann, J.K.; Dahl, J.J. Improved sensitivity in ultrasound molecular imaging with coherence- based beamforming. IEEE Trans. Med. Imaging 2018, 37, 241–250. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Wang, Y.; Li, W.; Yu, D. Eigenspace-based generalized sidelobe canceler beamforming applied to medical ultrasound imaging. Sensors 2016, 16, 1192. [Google Scholar] [CrossRef] [Green Version]
- Sakhaei, S.M.; Shamsian, S.E. Twofold minimum variance beamforming for enhanced ultrasound imaging. J. Med. Ultrason. 2018, 45, 17–24. [Google Scholar] [CrossRef]
- Chau, G.; Dahl, J.; Lavarello, R. Effects of phase aberration and phase aberration correction on the minimum variance beamformer. Ultrason. Imaging 2018, 40, 15–34. [Google Scholar] [CrossRef]
- Holfort, I.K.; Gran, F.; Jensen, J.A. Minimum variance beamforming for high frame-rate ultrasound imaging. In Proceedings of the 2007 IEEE International Ultrasonics Symposium, New York, NY, USA, 28–31 October 2007; pp. 1541–1544. [Google Scholar]
- Holfort, I.K.; Gran, F.; Jensen, J.A. Broadband minimum variance beamforming for ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Nicolae, I.D.; Marinescu, R.F.; Nicolae, P.M.; Cristina, M.D. Limits and usability of fast Fourier, discrete wavelet and wavelet packet transforms applied at signals from a primary winding of a locomotive transformer. In Proceedings of the 2017 International Conference on Electromechanical and Power Systems (SIELMEN), Iasi, Romania, 11–13 October 2017; pp. 462–467. [Google Scholar]
- Pei, S.C.; Hsue, W.L. The multiple-parameter discrete fractional fourier transform. IEEE Signal Process. Lett. 2006, 13, 329–332. [Google Scholar]
- Liu, D.; Schaible, K.; Low, W.; Ebbini, E.S. Three-dimensional image guidance for transcranial focused ultrasound therapy. In Proceedings of the IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18–21 April 2017; pp. 916–919. [Google Scholar]
- Kortbek, J.; Jensen, J.A.; Gammelmark, K.L. Sequential beamforming for synthetic aperture imaging. Ultrasonics 2013, 53, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.A.; Nikolov, S.I.; Gammelmark, K.L.; Pedersen, M.H. Synthetic aperture ultrasound imaging. Ultrasonics 2006, 44, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, X.; Wang, Y.; Yu, D. Sidelobe Canceller Algorithm for Ultrasonic Imaging. Laser Optoelectron. Prog. 2019, 56, 071103. [Google Scholar]
- Li, J.; Chen, X.; Wang, Y.; Shi, Y.; Yu, D. Generalized sidelobe canceler beamforming applied to medical ultrasound imaging. Acoust. Phys. 2017, 63, 229–236. [Google Scholar] [CrossRef]
- Albulayli, M.; Rakhmatov, D. Hybrid adaptive/nonadaptive beamforming for ultrasound imaging. In Proceedings of the 2013 IEEE International Conference on Acoustics, Vancouver, BC, Canada, 26–31 May 2013; pp. 1061–1065. [Google Scholar]
- Shan, T.-J.; Kailath, T. Adaptive beamforming for coherent signals and interference. IEEE Trans. Acoust. Speech. Signal Process. 1985, 33, 527–536. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, J.; Wu, R. Time-delay- and time-reversal-based robust capon beamformers for ultrasound imaging. IEEE Trans. Med. Imaging 2005, 24, 1308–1322. [Google Scholar] [CrossRef]
- Jensen, J.A.; Svendsen, N.B. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelec. Freq. Control 1992, 39, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.A. Field: A program for simulating ultrasound systems. Med. Biol. Eng. Comput. 1996, 34, 351–353. [Google Scholar]
- Zeng, X.; Wang, Y. Beam-domain eigenspace-based minimum variance beamformer for medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 2670–2676. [Google Scholar] [CrossRef]
- Nilsen, C.I.; Hafizovic, I. Beamspace adaptive beamforming for ultrasound imaging. IEEE Trans. Ultrason. Ferroelec. Freq. Control 2009, 56, 2187–2197. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Stoica, P.; Wang, Z. Doubly constrained robust capon beamformer. IEEE Trans. Signal Process. 2004, 52, 2407–2423. [Google Scholar] [CrossRef]
- Rombouts, G.; Spriet, A.; Moonen, M. sidelobe canceller based combined acoustic feedback- and noise cancellation. Signal Process. 2008, 88, 571–581. [Google Scholar] [CrossRef]
- Synnevag, J.F.; Austeng, A.; Holm, S. Adaptive beamforming applied to medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelec. Freq. Control 2007, 54, 1606–1613. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zheng, C.; Peng, H.; Chen, X. Short-lag spatial coherence combined with eigenspace-based minimum variance beamformer for synthetic aperture ultrasound imaging. Comput. Biol. Med. 2017, 91, 267–276. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Yu, J.; Guo, W.; Li, T.; Zheng, Y.P. Subarray coherence based postfilter for eigenspace based minimum variance beamformer in ultrasound plane-wave imaging. Ultrasonics 2016, 65, 23–33. [Google Scholar] [CrossRef]
Beamforming | FWHM (mm) | PSL (dB) |
---|---|---|
DAS | 1.50 | −15.4 |
SA | 1.11 | −30.2 |
GSC | 0.60 | −41.8 |
Broadband-GSC | 0.63 | −44.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ma, Z.; Mao, L.; Wang, Z.; Wang, Y.; Cai, H.; Chen, X. Broadband Generalized Sidelobe Canceler Beamforming Applied to Ultrasonic Imaging. Appl. Sci. 2020, 10, 1207. https://doi.org/10.3390/app10041207
Li J, Ma Z, Mao L, Wang Z, Wang Y, Cai H, Chen X. Broadband Generalized Sidelobe Canceler Beamforming Applied to Ultrasonic Imaging. Applied Sciences. 2020; 10(4):1207. https://doi.org/10.3390/app10041207
Chicago/Turabian StyleLi, Jiake, Zhe Ma, Lei Mao, Zhengjun Wang, Yi Wang, Huaiyu Cai, and Xiaodong Chen. 2020. "Broadband Generalized Sidelobe Canceler Beamforming Applied to Ultrasonic Imaging" Applied Sciences 10, no. 4: 1207. https://doi.org/10.3390/app10041207
APA StyleLi, J., Ma, Z., Mao, L., Wang, Z., Wang, Y., Cai, H., & Chen, X. (2020). Broadband Generalized Sidelobe Canceler Beamforming Applied to Ultrasonic Imaging. Applied Sciences, 10(4), 1207. https://doi.org/10.3390/app10041207