Cyclic Plasticity of the As-Built EOS Maraging Steel: Preliminary Experimental and Computational Results
Abstract
:1. Introduction
2. Materials and Methods
3. Cyclic Plasticity Mathematical Modelling
4. Results and Discussion
4.1. Cyclic Mechanical Testing
4.2. Cyclic Plasticity Simulation
5. Conclusions
- The stress–strain hysteresis loops produced from cyclic elastoplastic strain loading exhibited symmetrical characteristics, for both horizontal and vertical test coupons.
- Vertical test coupons appear to have a higher capacity for plastic strain energy dissipation than horizontal coupons, as indicated by their hysteresis loop area.
- The plasticity models used in this study were capable of simulating the hysteresis loops well.
- The anisotropic plasticity model offers a more representative description of the mechanical behaviour of this metal, resulting in higher accuracy simulations than the isotropic model.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Casati, R.; Lemke, J.N.; Tuissi, A.; Vedani, M. Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting. Metals 2016, 6, 218. [Google Scholar] [CrossRef]
- Becker, T.H.; Dimitrov, D. The achievable mechanical properties of SLM produced Maraging Steel 300 components. Rapid Prototyp. J. 2016, 22, 487–494. [Google Scholar] [CrossRef]
- Tan, C.; Zhou, K.; Ma, W.; Zhang, P.; Liu, M.; Kuang, T. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des. 2017, 134, 23–34. [Google Scholar] [CrossRef]
- Suryawanshi, J.; Prashanth, K.G.; Ramamurty, U. Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting. J. Alloys Compd. 2017, 725, 355–364. [Google Scholar] [CrossRef]
- Mooney, B.; Kourousis, K.I.; Raghavendra, R. Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments. Addit. Manuf. 2019, 25, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Tang, Q.; Feng, Q.; Ma, S.; Setchi, R.; Liu, Y.; Han, Q.; Fan, X.; Zhang, M. Effect of heat treatment on microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting. Opt. Laser Technol. 2019, 120, 105725. [Google Scholar] [CrossRef]
- Croccolo, D.; De Agostinis, M.; Fini, S.; Olmi, G.; Robusto, F.; Kostic, S.C.; Vranic, A.; Bogojevic, N. Fatigue response of as-built DMLS maraging steel and effects of aging, machining, and peening treatments. Metals 2018, 8, 505. [Google Scholar] [CrossRef] [Green Version]
- Damon, J.; Hanemann, T.; Dietrich, S.; Graf, G.; Lang, K.-H.; Schulze, V. Orientation dependent fatigue performance and mechanisms of selective laser melted maraging steel X3NiCoMoTi18-9-5. Int. J. Fatigue 2019, 127, 395–402. [Google Scholar] [CrossRef]
- Croccolo, D.; De Agostinis, M.; Fini, S.; Olmi, G.; Robusto, F.; Ciric-Kostic, S.; Moraca, S.; Bogojevic, N. Sensitivity of direct metal laser sintering Maraging steel fatigue strength to build orientation and allowance for machining. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 374–386. [Google Scholar] [CrossRef] [Green Version]
- Branco, R.; Costa, J.D.M.; Berto, F.; Razavi, S.M.J.; Ferreira, J.A.M.; Capela, C.; Santos, L.; Antunes, F. Low-cycle fatigue behaviour of AISI 18Ni300 maraging steel produced by selective laser melting. Metals 2018, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Mooney, B.; Kourousis, K.I.; Raghavendra, R.; Agius, D. Process phenomena influencing the tensile and anisotropic characteristics of additively manufactured maraging steel. Mater. Sci. Eng. A 2019, 745, 115–125. [Google Scholar] [CrossRef]
- Armstrong, P.J.; Frederick, C.O. A Mathematical Representation of the Multiaxial Bauschinger Effect; G.E.G.B. Report RD/B/N 731; Berkeley, CA, USA, 1996. [Google Scholar]
- Hill, R. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc Lond. Ser. A Math. Phys. Sci. 1948, 193, 281–297. [Google Scholar]
Ni | Mo | Co | Ti | Al | Cr | Mn | C | Fe | |
---|---|---|---|---|---|---|---|---|---|
MS1 (MS300) | 18.14 | 5.67 | 8.94 | 0.87 | 0.05–0.15 | ≤0.5 | ≤0.01 | ≤0.03 | Balance |
Kinematic Hardening | |||
---|---|---|---|
241,800 MPa | 930 | ||
98,280 MPa | 945 | ||
14,112 MPa | 96 |
Hill | Orthotropic Hooke | ||||
---|---|---|---|---|---|
F | 0.798 | E1 | 137 GPa | 0.43 | |
G | 0.638 | E2 | 161 GPa | 0.93 | |
H | 0.202 | E3 | 122 GPa | 0.26 | |
L | 1.167 | G12 | 122 GPa | 0.01 | |
M | 1.500 | G12 | 122 GPa | 0.24 | |
N | 1.500 | G23 | 122 GPa | 0.35 |
Isotropic | Anisotropic | |
---|---|---|
Vertical | 43.5% | 36.3% |
Horizontal | 58.6% | 21.1% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mooney, B.; Agius, D.; Kourousis, K.I. Cyclic Plasticity of the As-Built EOS Maraging Steel: Preliminary Experimental and Computational Results. Appl. Sci. 2020, 10, 1232. https://doi.org/10.3390/app10041232
Mooney B, Agius D, Kourousis KI. Cyclic Plasticity of the As-Built EOS Maraging Steel: Preliminary Experimental and Computational Results. Applied Sciences. 2020; 10(4):1232. https://doi.org/10.3390/app10041232
Chicago/Turabian StyleMooney, Barry, Dylan Agius, and Kyriakos I. Kourousis. 2020. "Cyclic Plasticity of the As-Built EOS Maraging Steel: Preliminary Experimental and Computational Results" Applied Sciences 10, no. 4: 1232. https://doi.org/10.3390/app10041232
APA StyleMooney, B., Agius, D., & Kourousis, K. I. (2020). Cyclic Plasticity of the As-Built EOS Maraging Steel: Preliminary Experimental and Computational Results. Applied Sciences, 10(4), 1232. https://doi.org/10.3390/app10041232