Detecting and Localizing Dents on Vehicle Bodies Using Region-Based Convolutional Neural Network
Abstract
:1. Introduction
2. Proposed R-CNN Model
2.1. Dent Highlight in an Image with Mach Bands
2.2. R-CNN Topology
2.3. Dent Localization Using Heat-Map
3. Performance Evaluation
3.1. Methods and Material
3.2. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Loferer, H. Automatic Painted Surface Inspection and Defect Detection. In Proceedings of the SENSOR + TEST Conferences, Nürnberg, Germany, 7–9 June 2011; pp. 871–873. [Google Scholar]
- Kamani, P.; Afshar, A.; Towhidkhah, F.; Roghani, E. Car body paint defect inspection using rotation invariant measure of the local variance and one-against-all support vector machine. In Informatics and Computational Intelligence (ICI), Proceedings of the 2011 First International Conference on Informatics and Computational Intelligence, Bandung, Indonesia, 12–14 December 2011; pp. 244–249.
- Chung, Y.C.; Chang, M. Visualization of Subtle Defects of Car Body Outer Panels. In Proceedings of the 2006 SICE-ICASE International Joint Conference, Busan, Korea, 18–21 October 2006; pp. 4639–4642. [Google Scholar]
- Armesto, L.; Tornero, J.; Herraez, A.; Asensio, J. Inspection system based on artificial vision for paint defects detection on cars bodies. In Robotics and Automation (ICRA), Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4.
- Tolba, A.S.; Khan, H.A.; Raafat, H.M. Automated visual inspection of flat surface products using feature fusion. In Signal Processing and Information Technology (ISSPIT), Proceedings of the 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) Ajman, United Arab Emirates, 14–17 December 2009; pp. 160–165.
- Godnig, E.C. Visual Acuity under Various Illuminance Lighting Conditions. Available online: http://www.theppsc.org (accessed on 20 September 2016).
- Navvab, M.; Uetiani, Y. Performance evaluation of the inspection lighting systems in industrial auto plants. J. Illum. Eng. Soc. 2001, 30, 152–169. [Google Scholar] [CrossRef]
- Glover, S.; Kelly, M.; Wozniak, H.; Moss, N. The effect of room illumination on visual acuity measurement. Aust. Orthopic J. 1999, 34, 3–8. [Google Scholar]
- Sanders, M.S.; McCormick, E.J. Human Factors in Engineering and Design, 7th ed.; McGraw-Hill: Singapore, 1993. [Google Scholar]
- Shlaer, S. The relation between visual acuity and illumination. J. Gen. Physiol. 1937, 21, 165–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banister, H.; Hartridge, H.; Lythgoe, R.J. The effect of illumination and other factors on the acuity vision. Br. J. Ophthalmol. 1927, 11, 321–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tjolleng, A.; Jung, K. Development of a Visual Inspection Method for Defects on Metallic Surface Considering Emergent Feature. In Proceedings of the 2016 Fall Conference of the Korean Institute of Industrial Engineers (KIIE), Seoul, Korea, 19 November 2016. [Google Scholar]
- Barber, R.; Zwilling, V.; Salichs, M.A. Algorithm for the evaluation of imperfections in auto bodywork using profiles from a retroreflective image. Sensors 2014, 14, 2476–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorïng, C.; Eichhorn, A.; Wang, X.; Kruse, R. Improved classification of surface defects for quality control of car body panels. In Fuzzy Systems, Proceedings of the 2006 IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, 16–21 July 2006; pp. 1476–1481.
- Kwon, B.K.; Won, J.S.; Kang, D.J. Fast defect detection for various types of surfaces using random forest with VOV features. Int. J. Precis. Eng. Manuf. 2015, 16, 965–970. [Google Scholar] [CrossRef]
- Faghih-Roohi, S.; Hajizadeh, S.; Núñez, A.; Babuska, R.; De Schutter, B. Deep convolutional neural networks for detection of rail surface defects. In Neural Networks (IJCNN), Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 2584–2589.
- Wang, T.; Chen, Y.; Qiao, M.; Snoussi, H. A fast and robust convolutional neural network-based defect detection model in product quality control. Int. J. Adv. Manuf. Technol. 2018, 94, 3465–3471. [Google Scholar] [CrossRef]
- Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. Int. J. Forecast. 2014, 30, 1030–1081. [Google Scholar] [CrossRef] [Green Version]
- Cincotti, S.; Gallo, G.; Ponta, L.; Raberto, M. Modelling and forecasting of electricity spot-prices: Computational intelligence vs. classical econometrics. AI Commun. 2014, 27, 301–314. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, K.; Yang, L.; Zhang, D. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN. Comput. Electron. Agric. 2019, 163, 104846. [Google Scholar] [CrossRef]
- Ferguson, M.; Ak, R.; Lee, Y.T.T.; Law, K.H. Detection and Segmentation of Manufacturing Defects with Convolutional Neural Networks and Transfer Learning. Smart Sustain. Manuf. Syst. 2018, 2. [Google Scholar] [CrossRef] [PubMed]
- Eslami, P.; Jung, K.; Lee, D.; Tjolleng, A. Predicting tanker freight rates using parsimonious variables and a hybrid artificial neural network with an adaptive genetic algorithm. Marit. Econ. Logist. 2017, 19, 538–550. [Google Scholar] [CrossRef]
- Rardin, R.L. Optimization in Operations Research; Prentice Hill: New York, NY, USA, 1998. [Google Scholar]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Bekiroglu, S.; Dede, T.; Ayvaz, Y. Implementation of different encoding types on structural optimization based on adaptive genetic algorithm. Finite Elem. Anal. Des. 2009, 45, 826–835. [Google Scholar] [CrossRef]
- Lee, C.; Lin, W.; Chen, Y.; Kuo, B. Gene selection and sample classification on microarray data based on adaptive genetic algorithm/k-nearest neighbor method. Expert Syst. Appl. 2011, 38, 4661–4667. [Google Scholar] [CrossRef]
- Yun, Y. Hybrid genetic algorithm with adaptive local search scheme. Comput. Ind. Eng. 2006, 51, 128–141. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Kernel number | 58 |
Kernel size | 6 |
Padding size | 2 |
Pooling size | 3 |
Stride size | 3 |
Fully connected nodes | 91 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.H.; Tjolleng, A.; Chang, J.; Cha, M.; Park, J.; Jung, K. Detecting and Localizing Dents on Vehicle Bodies Using Region-Based Convolutional Neural Network. Appl. Sci. 2020, 10, 1250. https://doi.org/10.3390/app10041250
Park SH, Tjolleng A, Chang J, Cha M, Park J, Jung K. Detecting and Localizing Dents on Vehicle Bodies Using Region-Based Convolutional Neural Network. Applied Sciences. 2020; 10(4):1250. https://doi.org/10.3390/app10041250
Chicago/Turabian StylePark, Sung Hyun, Amir Tjolleng, Joonho Chang, Myeongsup Cha, Jongcheol Park, and Kihyo Jung. 2020. "Detecting and Localizing Dents on Vehicle Bodies Using Region-Based Convolutional Neural Network" Applied Sciences 10, no. 4: 1250. https://doi.org/10.3390/app10041250
APA StylePark, S. H., Tjolleng, A., Chang, J., Cha, M., Park, J., & Jung, K. (2020). Detecting and Localizing Dents on Vehicle Bodies Using Region-Based Convolutional Neural Network. Applied Sciences, 10(4), 1250. https://doi.org/10.3390/app10041250