Self-Organized Conductive Gratings of Au Nanostripe Dimers Enable Tunable Plasmonic Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Plasmonic and Conductive Nanostripe Arrays
2.2. Plasmon Hybridization in Nanostripe Dimer Arrays
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schuller, J.A.; Barnard, E.S.; Cai, W.; Jun, Y.C.; White, J.S.; Brongersma, M.L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Kneipp, K.; Moskovits, M.; Kneipp, H. Surface Enhanced Raman Scattering: Physics and Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Woessner, A.; Lundeberg, M.B.; Gao, Y.; Principi, A.; Alonso-González, P.; Carrega, M.; Watanabe, K.; Taniguchi, T.; Vignale, G.; Polini, M.; et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 2015, 14, 421–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydin, K.; Ferry, V.E.; Briggs, R.M.; Atwater, H.A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2011, 2, 517. [Google Scholar] [CrossRef] [PubMed]
- Alessandri, I.; Ferroni, M.; Depero, L.E. Plasmonic heating-assisted transformation of SiO 2/Au core/shell nanospheres (Au nanoshells): Caveats and opportunities for SERS and direct laser writing. Plasmonics 2013, 8, 129–132. [Google Scholar] [CrossRef]
- Giordano, M.C.; Foti, A.; Messina, E.; Gucciardi, P.G.; Comoretto, D.; De Mongeot, F.B. SERS amplification from self-organized arrays of plasmonic nanocrescents. ACS Appl. Mater. Interf. 2016, 8, 6629–6638. [Google Scholar] [CrossRef]
- Belardini, A.; Benedetti, A.; Centini, M.; Leahu, G.; Mura, F.; Sennato, S.; Sibilia, C.; Robbiano, V.; Giordano, M.C.; Martella, C.; et al. Second harmonic generation circular dichroism from self-ordered hybrid plasmonic–photonic nanosurfaces. Adv. Opt. Mater. 2014, 2, 208–213. [Google Scholar] [CrossRef]
- Lee, J.; Crampton, K.T.; Tallarida, N.; Apkarian, V.A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nat. 2019, 568, 78–82. [Google Scholar] [CrossRef]
- Belardini, A.; Larciprete, M.C.; Centini, M.; Fazio, E.; Sibilia, C.; Chiappe, D.; Martella, C.; Toma, A.; Giordano, M.; de Mongeot, F.B. Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires. Phys. Rev. Lett. 2011, 107, 257401. [Google Scholar] [CrossRef]
- Neubrech, F.; Pucci, A.; Cornelius, T.W.; Karim, S.; García-Etxarri, A.; Aizpurua, J. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys. Rev. Lett. 2008, 101, 157403. [Google Scholar] [CrossRef] [Green Version]
- Leahu, G.; Petronijevic, E.; Belardini, A.; Centini, M.; Sibilia, C.; Hakkarainen, T.; Koivusalo, E.; Rizzo Piton, M.; Suomalainen, S.; Guina, M. Evidence of Optical Circular Dichroism in GaAs-Based Nanowires Partially Covered with Gold. Adv. Opt. Mater. 2017, 5, 1601063. [Google Scholar] [CrossRef] [Green Version]
- Pors, A.; Nielsen, M.G.; Bozhevolnyi, S.I. Analog Computing Using Reflective Plasmonic Metasurfaces. Nano Lett. 2015, 15, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Near, R.; Tabor, C.; Duan, J.; Pachter, R.; El-Sayed, M. Pronounced Effects of Anisotropy on Plasmonic Properties of Nanorings Fabricated by Electron Beam Lithography. Nano Lett. 2012, 12, 2158–2164. [Google Scholar] [CrossRef] [PubMed]
- Iorio, A.; Rocci, M.; Bours, L.; Carrega, M.; Zannier, V.; Sorba, L.; Roddaro, S.; Giazotto, F.; Strambini, E. Vectorial Control of the Spin–Orbit Interaction in Suspended InAs Nanowires. Nano Lett. 2018, 19, 652–657. [Google Scholar] [CrossRef] [Green Version]
- Giordano, M.C.; Viti, L.; Mitrofanov, O.; Vitiello, M.S. Phase-sensitive terahertz imaging using room-temperature near-field nanodetectors. Optica 2018, 5, 651–657. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Frontiera, R.R.; Henry, A.I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, applications, and the future. Materialstoday 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhen, Y.-R.; Neumann, O.; Day, J.K.; Nordlander, P.; Halas, N.J. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. 2014, 5, 4424. [Google Scholar] [CrossRef]
- Gwo, S.; Wang, C.-Y.; Chen, H.-Y.; Lin, M.-H.; Sun, L.; Li, X.; Chen, W.-L.; Chang, Y.-M.; Ahn, H. Plasmonic Metasurfaces for Nonlinear Optics and Quantitative SERS. ACS Photon. 2016, 3, 1371–1384. [Google Scholar] [CrossRef]
- Repetto, D.; Giordano, M.C.; Foti, A.; Gucciardi, P.G.; Mennucci, C.; De Mongeot, F.B. SERS amplification by ultra-dense plasmonic arrays on self-organized PDMS templates. Appl. Surf. Sci. 2018, 446, 83–91. [Google Scholar] [CrossRef]
- Kessentini, S.; Barchiesi, D.; D’Andrea, C.; Toma, A.; Guillot, N.; Di Fabrizio, E.; Fazio, B.; Maragò, O.M.; Gucciardi, P.G.; De La Chapelle, M.L. Gold Dimer Nanoantenna with Slanted Gap for Tunable LSPR and Improved SERS. J. Phys. Chem. C 2014, 118, 3209–3219. [Google Scholar] [CrossRef]
- Wu, C.; Khanikaev, A.B.; Adato, R.; Arju, N.; Yanik, A.A.; Altug, H.; Shvets, G. Fano-resonant Asymmetric Metamaterials for Ultrasensitive Spectroscopy and Identification of Molecular Monolayers. Nat. Mater. 2012, 11, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Neubrech, F.; Beck, S.; Glaser, T.; Hentschel, M.; Giessen, H.; Pucci, A. Spatial Extent of Plasmonic Enhancement of Vibrational Signals in the Infrared. ACS Nano 2014, 8, 6250–6258. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, D.; Limaj, O.; Janner, D.; Etezadi, D.; De Abajo, F.J.G.; Pruneri, V.; Altug, H. Mid-infrared Plasmonic Biosensing with Graphene. Science 2015, 349, 165–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yavas, O.; Aćimović, S.S.; Garcia-Guirado, J.; Berthelot, J.; Dobosz, P.; Sanz, V.; Quidant, R. Self-Calibrating On-Chip Localized Surface Plasmon Resonance Sensing for Quantitative and Multiplexed Detection of Cancer Markers in Human Serum. ACS Sens. 2018, 3, 1376–1384. [Google Scholar] [CrossRef] [PubMed]
- Aćimović, S.S.; Ortega, M.A.; Sanz, V.; Berthelot, J.; Garcia-Cordero, J.L.; Renger, J.; Maerkl, S.J.; Kreuzer, M.P.; Quidant, R. LSPR Chip for Parallel, Rapid, and Sensitive Detection of Cancer Markers in Serum. Nano Lett. 2014, 14, 2636–2641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verre, R.; Fleischer, K.; Ualibek, O.; Shvets, I.V. Self-assembled broadband plasmonic nanoparticle arrays for sensing applications. Appl. Phys. Lett. 2012, 100, 31102. [Google Scholar] [CrossRef] [Green Version]
- Repetto, D.; Giordano, M.C.; Martella, C.; De Mongeot, F.B. Transparent aluminium nanowire electrodes with optical and electrical anisotropic response fabricated by defocused ion beam sputtering. Appl. Surf. Sci. 2015, 327, 444–452. [Google Scholar] [CrossRef]
- Della Valle, G.; Polli, D.; Biagioni, P.; Martella, C.; Giordano, M.C.; Finazzi, M.; Longhi, S.; Duò, L.; Cerullo, G.; De Mongeot, F.B. Self-organized plasmonic metasurfaces for all-optical modulation. Phys. Rev. B 2015, 91, 235440. [Google Scholar] [CrossRef]
- Giordano, M.C.; De Mongeot, F.B. Anisotropic Nanoscale Wrinkling in Solid-State Substrates. Adv. Mater. 2018, 30, 1801840. [Google Scholar] [CrossRef]
- Giordano, M.C.; Longhi, S.; Barelli, M.; Mazzanti, A.; De Mongeot, F.B.; Della Valle, G. Plasmon hybridization engineering in self-organized anisotropic metasurfaces. Nano Res. 2018, 11, 3943–3956. [Google Scholar] [CrossRef]
- Gnecco, E.; Nita, P.; Casado, S.; Pimentel, C.; Mougin, K.; Giordano, M.C.; Repetto, D.; De Mongeot, F.B. Channeling motion of gold nanospheres on a rippled glassed surface. Nanotechnology 2014, 25, 485302. [Google Scholar] [CrossRef] [PubMed]
- Octavio, M.; Gutierrez, G.; Aponte, J. Conductivity and noise critical exponents in thin films near the metal-insulator percolation transition. Phys. Rev. B 1987, 36, 2461. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M.C.; Repetto, D.; Mennucci, C.; Carrara, A.; De Mongeot, F.B. Template-assisted growth of transparent plasmonic nanowire electrodes. Nanotechnology 2016, 27, 495201. [Google Scholar] [CrossRef] [PubMed]
- Aas, L.M.S.; Kildemo, M.; Martella, C.; Giordano, M.C.; Chiappe, D.; De Mongeot, F.B. Optical properties of biaxial nanopatterned gold plasmonic nanowired grid polarizer. Opt. Express 2013, 21, 30918–30931. [Google Scholar] [CrossRef] [PubMed]
- Barelli, M.; Repetto, D.; De Mongeot, F.B. Infrared Plasmonics via Self-Organized Anisotropic Wrinkling of Au/PDMS Nanoarrays. ACS Appl. Polym. Mater. 2019, 1, 1334–1340. [Google Scholar] [CrossRef]
- Della Valle, G.; Søndergaard, T.; Bozhevolnyi, S.I. Plasmon-polariton nano-strip resonators: From visible to infra-red. Opt. Express 2008, 16, 6867–6876. [Google Scholar] [CrossRef]
- Søndergaard, T.; Jung, J.; Bozhevolnyi, S.I.; Della Valle, G. Theoretical analysis of gold nano-strip gap plasmon resonators. New J. Phys. 2008, 10, 105008. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordano, M.C.; Barelli, M.; Della Valle, G.; Buatier de Mongeot, F. Self-Organized Conductive Gratings of Au Nanostripe Dimers Enable Tunable Plasmonic Activity. Appl. Sci. 2020, 10, 1301. https://doi.org/10.3390/app10041301
Giordano MC, Barelli M, Della Valle G, Buatier de Mongeot F. Self-Organized Conductive Gratings of Au Nanostripe Dimers Enable Tunable Plasmonic Activity. Applied Sciences. 2020; 10(4):1301. https://doi.org/10.3390/app10041301
Chicago/Turabian StyleGiordano, Maria Caterina, Matteo Barelli, Giuseppe Della Valle, and Francesco Buatier de Mongeot. 2020. "Self-Organized Conductive Gratings of Au Nanostripe Dimers Enable Tunable Plasmonic Activity" Applied Sciences 10, no. 4: 1301. https://doi.org/10.3390/app10041301
APA StyleGiordano, M. C., Barelli, M., Della Valle, G., & Buatier de Mongeot, F. (2020). Self-Organized Conductive Gratings of Au Nanostripe Dimers Enable Tunable Plasmonic Activity. Applied Sciences, 10(4), 1301. https://doi.org/10.3390/app10041301