Circular Dichroism in Low-Cost Plasmonics: 2D Arrays of Nanoholes in Silver
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication
2.2. Measurements
2.3. Simulations
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and A; pplications Springer Science & Business: Media, Germany, 2007. [Google Scholar]
- Salomon, L.; Grillot, F.; Zayats, A.V.; de Fornel, F. Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film. Phys. Rev. Lett. 2001, 86, 1110. [Google Scholar] [CrossRef] [PubMed]
- García de Abajo, F.J. Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys. 2007, 79, 1267. [Google Scholar] [CrossRef] [Green Version]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824. [Google Scholar] [CrossRef]
- Xu, J.; Guan, P.; Kvasnička, P.; Gong, H.; Homola, J.; Yu, Q. Light Transmission and Surface-Enhanced Raman Scattering of Quasi-3D Plasmonic Nanostructure Arrays with Deep and Shallow Fabry-Pérot Nanocavities. J. Phys. Chem. C 2011, 115, 10996–11002. [Google Scholar] [CrossRef]
- Masson, J.-F.; Murray-Methota, M.-P.; Livea, L.S. Nanohole arrays in chemical analysis: manufacturing methods and applications. Analyst 2010, 135, 1483–1489. [Google Scholar] [CrossRef]
- Brolo, A.G.; Kwok, S.C.; Moffitt, M.G.; Gordon, R.; Riordon, J.; Kavanagh, K.L. Enhanced Fluorescence from Arrays of Nanoholes in a Gold Film. J. Am. Chem. Soc. 2005, 127, 14936–14941. [Google Scholar] [CrossRef]
- Michieli, N.; Kalinic, B.; Scian, C.; Cesca, T.; Mattei, G. Emission Rate Modification and Quantum Efficiency Enhancement of Er3+ Emitters by Near-Field Coupling with Nanohole Arrays. ACS Photonics 2018, 5, 2189–2199. [Google Scholar] [CrossRef]
- Cao, Z.L.; Yiu, L.Y.; Zhang, Z.Q.; Chan, C.T.; Ong, H.C. Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion. Phys. Rev. B 2017, 95, 155415. [Google Scholar] [CrossRef] [Green Version]
- Blanchard-Dionne, A.; Meunier, M. Sensing with periodic nanohole arrays. Adv. Opt. Photon. 2017, 9, 891–940. [Google Scholar] [CrossRef]
- Escobedo, C. On-chip nanohole array based sensing: a review. Lab. Chip. 2013, 13, 2445. [Google Scholar] [CrossRef] [PubMed]
- Balaşa, I.G. Nano-Hole Arrays for plasmonic biosensors. Master’s Degree Thesis, University of Padova, via Marzolo 8, I-35131 Padova, Italy, 2015. [Google Scholar]
- Couture, M.; Liang, Y.; Poirier Richard, H.-P.; Faid, R.; Peng, W.; Masson, J.-F. Tuning the 3D plasmon field of nanohole arrays. Nanoscale 2013, 5, 12399. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Jiang, H.; Sabarinathan, J.; Yang, J. Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance. Nanotechnology 2013, 24, 195501. [Google Scholar] [CrossRef] [PubMed]
- Blanchard-Dionne, A.; Meunier, M. Multiperiodic nanohole array for high precision sensing. Nanophotonics 2018, 8, 325–329. [Google Scholar] [CrossRef]
- Valsecchi, C.; Gomez Armas, L.E.; Weber de Menezes, J. Large Area Nanohole Arrays for Sensing Fabricated by Interference Lithography. Sensors 2019, 19, 2182. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.A.; He, H.; Pham-Huy, C. Chiral drugs: An overview. Adv. Nat. Sci. Nanosci. Nanotechnol. 2006, 2, 85–100. [Google Scholar]
- Schäferling, M.; Dregely, D.; Hentschel, M.; Giessen, H. Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures. Phys. Rev. X 2012, 2, 031010. [Google Scholar] [CrossRef] [Green Version]
- Belardini, A.; Larciprete, M.C.; Centini, M.; Fazio, E.; Sibilia, C.; Chiappe, D.; Martella, C.; Toma, A.; Giordano, M.; Buatier de Mongeot, F. Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires. Phys. Rev. Lett. 2011, 107, 257401. [Google Scholar] [CrossRef]
- Belardini, A.; Centini, M.; Leahu, G.; Hooper, D.C.; Li Voti, R.; Fazio, E.; Haus, J.W.; Sarangan, A.; Valev, V.K.; Sibilia, C. Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires. Sci. Rep. 2016, 6, 31796. [Google Scholar] [CrossRef]
- Leahu, G.; Petronijević, E.; Belardini, A.; Centini, M.; Sibilia, C.; Hakkarainen, T.; Koivusalo, E.; Rizzo Piton, M.; Suomalainen, S.; Guina, M. Evidence of Optical Circular Dichroism in GaAs-Based Nanowires Partially Covered with Gold. Adv. Opt. Mater. 2017, 5, 1601063. [Google Scholar] [CrossRef] [Green Version]
- Petronijević, E.; Leahu, G.; Belardini, A.; Centini, M.; Li Voti, R.; Hakkarainen, T.; Koivusalo, E.; Rizzo Piton, M.; Suomalainen, S.; Guina, M.; et al. Photo-Acoustic Spectroscopy Reveals Extrinsic Optical Chirality in GaAs-Based Nanowires Partially Covered with Gold. Int. J. Thermophys. 2018, 39, 45. [Google Scholar] [CrossRef]
- Hakkarainen, T.; Petronijević, E.; Rizzo Piton, M.; Sibilia, C. Demonstration of extrinsic chirality of photoluminescence with semiconductor-metal hybrid nanowires. Sci. Rep. 2019, 9, 5040. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Cohen, A.E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 2010, 104, 163901. [Google Scholar] [CrossRef]
- Tang, Y.; Cohen, A.E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 2011, 332, 333–336. [Google Scholar] [CrossRef] [Green Version]
- Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R.V.; Lapthorn, A.J.; Kelly, S.M.; Barron, L.D.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 2010, 5, 783–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Askarpour, A.N.; Sun, L.; Shi, J.; Li, X.; Alù, A. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun. 2017, 8, 14180. [Google Scholar] [CrossRef]
- Petronijević, E.; Centini, M.; Belardini, A.; Leahu, G.; Hakkarainen, T.; Sibilia, C. Chiral near-field manipulation in Au-GaAs hybrid hexagonal nanowires. Opt. Express 2017, 25, 14148. [Google Scholar] [CrossRef] [PubMed]
- Leahu, G.; Petronijević, E.; Belardini, A.; Centini, M.; Li Voti, R.; Hakkarainen, T.; Koivusalo, E.; Guina, M.; Sibilia, C. Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires. Sci. Rep. 2017, 7, 2833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petronijević, E.; Sibilia, C. Enhanced Near-Field Chirality in Periodic Arrays of Si Nanowires for Chiral Sensing. Molecules 2019, 24, 853. [Google Scholar] [CrossRef] [Green Version]
- Petronijević, E.; Sandoval, E.M.; Ramezani, M.; Ordóňez-Romero, C.L.; Noguez, C.; Bovino, F.A.; Sibilia, C.; Pirruccio, G. Extended Chiro-optical Near-Field Response of Achiral Plasmonic Lattices. J. Phys. Chem. C 2019, 123, 38–23620. [Google Scholar] [CrossRef]
- Yao, H.; Zhong, S. Handedness-switchable chiral field in the 1D metal grooves for plasmonic circular dichroism spectroscopy. J. Opt. 2017, 19, 055001. [Google Scholar] [CrossRef]
- Maoz, B.M.; Ben Moshe, A.; Vestler, D.; Bar-Elli, O.; Markovich, G. Chiroptical Effects in Planar Achiral Plasmonic Oriented Nanohole Arrays. Nano Lett. 2012, 12, 2357–2361. [Google Scholar] [CrossRef] [PubMed]
- Gorkunov, M.V.; Ezhov, A.A.; Artemov, V.V.; Rogov, O.Y.; Yudin, S.G. Extreme optical activity and circular dichroism of chiral metal hole arrays. Appl. Phys. Lett. 2014, 104, 221102. [Google Scholar] [CrossRef] [Green Version]
- Gorkunov, M.V.; Dmitrienko, V.E.; Ezhov, A.A.; Artemov, V.V.; Rogov, O.Y. Implications of the causality principle for ultra chiral metamaterials. Sci. Rep. 2015, 5, 9273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondratov, A.V.; Gorkunov, M.V.; Darinskii, A.N.; Gainutdinov, R.V.; Rogov, O.Y.; Ezhov, A.A.; Artemov, V.V. Extreme optical chirality of plasmonic nanohole arrays due to chiral Fano resonance. Phys. Rev. B 2016, 93, 195418. [Google Scholar] [CrossRef]
- Cesca, T.; Michieli, N.; Kalinic, B.; Sánchez-Espinoza, A.; Rattin, M.; Russo, V.; Mattarello, V.; Scian, C.; Mazzoldi, P.; Mattei, G. Nonlinear absorption tuning by composition control in bimetallic plasmonic nanoprism arrays. Nanoscale 2015, 7, 12411–12418. [Google Scholar] [CrossRef]
- Russo, V.; Michieli, N.; Cesca, T.; Scian, C.; Silvestri, D.; Morpurgo, M.; Mattei, G. Gold–silver alloy semi-nanoshell arrays for label-free plasmonic biosensors. Nanoscale 2017, 9, 10117–10125. [Google Scholar] [CrossRef]
- Sanchez-Esquivel, H.; Raygoza-Sanchez, K.Y.; Rangel-Rojo, R.; Gemo, E.; Michieli, N.; Kalinic, B.; Reyes-Esqueda, J.A.; Cesca, T.; Mattei, G. Spectral dependence of nonlinear absorption in ordered silver metallic nanoprism arrays. Sci. Rep. 2017, 7, 5307. [Google Scholar]
- Sanchez-Esquivel, H.; Raygoza-Sanchez, K.Y.; Rangel-Rojo, R.; Kalinic, B.; Michieli, N.; Cesca, T.; Mattei, G. Ultra-fast dynamics in the nonlinear optical response of silver nanoprisms ordered arrays. Nanoscale 2018, 10, 5182–5190. [Google Scholar] [CrossRef]
- Cesca, T.; Garcia Ramirez, E.V.; Sanchez-Esquivel, H.; Michieli, N.; Kalinic, B.; Gomez Cervantes, J.M.; Rangel-Rojo, R.; Reyes Esqueda, J.A.; Mattei, G. Dichroic nonlinear absorption response of silver nanoprism arrays. RSC Adv. 2017, 7, 17741–17747. [Google Scholar] [CrossRef] [Green Version]
- Petronijević, E.; Leahu, G.; Li Voti, R.; Belardini, A.; Scian, C.; Michieli, N.; Cesca, T.; Mattei, G.; Sibilia, C. Photo-acoustic detection of chirality in metal-polystyrene metasurfaces. Appl. Phys. Lett. 2019, 114, 053101. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, J.; Pan, C.; Wu, Q.; Yao, J.; Chen, Z.; Chen, J.; Li, Y.; Yu, X.; Sun, Q.; et al. Giant circular dichroism of large-area extrinsic chiral metal nanocrecents. Sci. Rep. 2018, 8, 3351. [Google Scholar] [CrossRef] [PubMed]
- Lumerical Solutions, Inc. Available online: http://www.lumerical.com/tcad-products/fdtd/ (accessed on 11 January 2019).
- Huang, C.; Wang, Q.; Zhu, Y. Dual effect of surface plasmons in light transmission through perforated metal films. Phys. Rev. B 2007, 75, 245421. [Google Scholar] [CrossRef] [Green Version]
- Petronijević, E.; Leahu, G.; Mussi, V.; Sibilia, C.; Bovino, A.F. Photoacoustic technique for the characterization of plasmonic properties of 2D periodic arrays of gold nanoholes. AIP Adv. 2017, 7, 025210. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petronijevic, E.; Belardini, A.; Leahu, G.; Cesca, T.; Scian, C.; Mattei, G.; Sibilia, C. Circular Dichroism in Low-Cost Plasmonics: 2D Arrays of Nanoholes in Silver. Appl. Sci. 2020, 10, 1316. https://doi.org/10.3390/app10041316
Petronijevic E, Belardini A, Leahu G, Cesca T, Scian C, Mattei G, Sibilia C. Circular Dichroism in Low-Cost Plasmonics: 2D Arrays of Nanoholes in Silver. Applied Sciences. 2020; 10(4):1316. https://doi.org/10.3390/app10041316
Chicago/Turabian StylePetronijevic, Emilija, Alessandro Belardini, Grigore Leahu, Tiziana Cesca, Carlo Scian, Giovanni Mattei, and Concita Sibilia. 2020. "Circular Dichroism in Low-Cost Plasmonics: 2D Arrays of Nanoholes in Silver" Applied Sciences 10, no. 4: 1316. https://doi.org/10.3390/app10041316
APA StylePetronijevic, E., Belardini, A., Leahu, G., Cesca, T., Scian, C., Mattei, G., & Sibilia, C. (2020). Circular Dichroism in Low-Cost Plasmonics: 2D Arrays of Nanoholes in Silver. Applied Sciences, 10(4), 1316. https://doi.org/10.3390/app10041316