The Benefits of the ZnO/Clay Composite Formation as a Promising Antifungal Coating for Paint Applications
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Initial Premises: High Antimicrobial Response of the Nanoparticulated ZnO
3.2. Finding a Potential Technological Application of the ZnO/Clay Composite
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Roberts, J.R.; Reigart, J.R. Fungicides, Recognition Management Pesticide Poisonings, 6th ed.; U.S. Environmental Protection Agency: Washington, WA, USA, 2013; pp. 143–160. Available online: https://www.epa.gov/sites/production/files/documents/rmpp_6thed_ch16_fungicides.pdf (accessed on 18 October 2018).
- Rouabhi, R. Introduction and toxicology of fungicide. In Fungicides; INTECH Open Access Publisher: Guangdong, China, 2010; pp. 363–382. [Google Scholar] [CrossRef] [Green Version]
- Ballantyne, B. Pesticide toxicology and international regulation. In Pesticide Toxicology International Regulation; Marrs, T.C., Ballantyne, B., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2003; pp. 193–303. [Google Scholar] [CrossRef]
- Gupta, P.K. Toxicity of Fungicides. In Veterinary Toxicology Basic Clinical Principles, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 569–580. [Google Scholar] [CrossRef]
- Thomas, K.V.; Brooks, S. The environmental fate and effects of antifouling paint biocides. Biofouling 2010, 26, 73–88. [Google Scholar] [CrossRef]
- Windler, L.; Height, M.; Nowack, B. Comparative evaluation of antimicrobials for textile applications. Environ. Int. 2013, 53, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Bernauer, U.; Chaudhry, Q.; Coenraads, P.-J.; Degen, G.; Dusinska, M.; Lilienblum, W.; Luch, A.; Nielsen, E.; Platzek, T.; Rastogi, S.C.; et al. Opinion on Zinc Pyrithione Colipa n° P81; Scientific Committee on Consumer Safety: Brussels, Belgium, 2013. [Google Scholar]
- Amara, I.; Miled, W.; Ben Slama, R.; Ladhari, N. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ. Toxicol. Pharmacol. 2018, 57, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Bao, V.W.W.; Leung, K.M.Y.; Qiu, J.-W.; Lam, M.H.W. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar. Pollut. Bull. 2011, 62, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Guthery, E.; Seal, L.A.; Anderson, E.L. Zinc pyrithione in alcohol-based products for skin antisepsis: Persistence of antimicrobial effects. Am. J. Infect. Control. 2005, 33, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Lamore, S.D.; Cabello, C.M.; Wondrak, G.T. The topical antimicrobial zinc pyrithione is a heat shock response inducer that causes DNA damage and PARP-dependent energy crisis in human skin cells. Cell Stress Chaperones 2010, 15, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Sakkas, V.A.; Albanis, T.; Sugasawa, S.; Shibata, K. Aqueous phototransformation of zinc pyrithione. J. Chromatogr. A 2007, 1144, 175–182. [Google Scholar] [CrossRef]
- Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M.F.; Fiévet, F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 2006, 6, 866–870. [Google Scholar] [CrossRef]
- Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 2008, 279, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Zhu, L.; Lin, D. Toxicity of ZnO nanoparticles to escherichia coli: Mechanism and the influence of medium components. Environ. Sci. Technol. 2011, 45, 1977–1983. [Google Scholar] [CrossRef]
- He, L.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal activity of zinc oxide nanoparticles against botrytis cinerea and penicillium expansum. Microbiol. Res. 2011, 166, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Rajput, J.; Kaith, B.S.; Kaur, M.; Sharma, S. Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films 2010, 519, 1224–1229. [Google Scholar] [CrossRef]
- Lipovsky, A.; Nitzan, Y.; Gedanken, A.; Lubart, R. Antifungal activity of ZnO nanoparticles—The role of ROS mediated cell injury. Nanotechnology 2011, 22, 105101. [Google Scholar] [CrossRef] [PubMed]
- De Lucas-Gil, E.; Leret, P.; Monte-Serrano, M.; Reinosa, J.J.; Enríquez, E.; Del Campo, A.; Cañete, M.; Menéndez, J.; Fernández, J.F.; Rubio-Marcos, F. ZnO nanoporous spheres with broad-spectrum antimicrobial activity by physicochemical interactions. ACS Appl. Nano Mater. 2018, 1, 3214–3225. [Google Scholar] [CrossRef]
- De Lucas-Gil, E.; Reinosa, J.J.; Neuhaus, K.; Vera-Londono, L.; Martín-González, M.; Fernández, J.F.; Rubio-Marcos, F. Exploring New mechanisms for effective antimicrobial materials: Electric contact-killing based on multiple schottky barriers. ACS Appl. Mater. Interfaces 2017, 9, 26219–26225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lucas-Gil, E.; Fernández, J.F.; Rubio-Marcos, F. One more step against nanotoxicity: Hierarchical particles designed to antifungal properties. Mater. Des. 2017, 34, 188–195. [Google Scholar] [CrossRef]
- Yamamoto, O. Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 2001, 3, 643–646. [Google Scholar] [CrossRef]
- Padmavathy, N.; Vijayaraghavan, R. Enhanced bioactivity of ZnO nanoparticles—An antimicrobial study. Sci. Technol. Adv. Mater. 2008, 9, 035004. [Google Scholar] [CrossRef]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef]
- Sun, Q.; Li, J.; Le, T. Zinc oxide nanoparticle as a novel class of antifungal agents: Current advances and future perspectives. J. Agric. Food Chem. 2018, 66, 11209–11220. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, B.; Xu, S.; Lin, L.; Liu, S.; He, D. Synthesis of hierarchically structured ZnO nanomaterials via a supercritical assisted solvothermal process. Chem. Commun. 2014, 50, 930–932. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Vergés, M.; Serna, C.J. Morphological characterization of ZnO powders by X-ray and IR spectroscopy. J. Mater. Sci. Lett. 1988, 7, 970–972. [Google Scholar] [CrossRef]
- Vergés, M.A.; Mifsud, A.; Serna, C.J. Formation of rod-like zinc oxide microcrystals in homogeneous solutions. J. Chem. Soc. Faraday Trans. 1990, 86, 959–963. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- De Lucas-Gil, E.; Del Campo, A.; Pascual, L.; Monte-Serrano, M.; Menéndez, J.; Fernández, J.F.; Rubio-Marcos, F. The fight against multidrug-resistant organisms: The role of ZnO crystalline defects. Mater. Sci. Eng. C 2019, 99, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Möhler, J.S.; Sim, W.; Blaskovich, M.A.T.; Cooper, M.A.; Ziora, Z.M. Silver bullets: A new lustre on an old antimicrobial agent. Biotechnol. Adv. 2018, 36, 1391–1411. [Google Scholar] [CrossRef] [Green Version]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014, 4, 3974–3983. [Google Scholar] [CrossRef] [Green Version]
- Monte-Serrano, M.; Fernandez-Saiz, P.; Ortí-Lucas, R.M. Effective antimicrobial coatings containing silver-based nanoclays and zinc pyrithione. J. Microb. Biochem. Technol. 2015, 7. [Google Scholar] [CrossRef]
- Rubio-Marcos, F.; Calvino-Casilda, V.; Bañares, M.A.; Fernandez, J.F. Novel hierarchical Co3O4/ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of glycerol. J. Catal. 2010, 275, 288–293. [Google Scholar] [CrossRef]
- Rubio-Marcos, F.; Manzano, C.V.; Reinosa, J.J.; Romero, J.J.; Marchet, P.; Martín-González, M.S.; Fernández, J.F. Mechanism of Ni1−x ZnxO formation by thermal treatments on NiO nanoparticles dispersed over ZnO. J. Phys. Chem. C 2011, 115, 13577–13583. [Google Scholar] [CrossRef]
- De Lucas-Gil, E.; Rubio-Marcos, F.; Leret, P.; Motos-Pérez, B.; Monte-Serrano, M.; Menéndez, J.; Fernández, J.F. Opening a new gate to glass preservative with long-lasting antimicrobial activity as replacement of parabens. ACS Sustain. Chem. Eng. 2017, 5, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Martín-González, M.S.; García, M.A.; Lorite, I.; Costa-Krämer, J.L.; Rubio-Marcos, F.; Carmona, N.; Fernández, J.F. A solid-state electrochemical reaction as the origin of magnetism at oxide nanoparticle interfaces. J. Electrochem. Soc. 2010, 157, E31–E35. [Google Scholar] [CrossRef] [Green Version]
- Calvino-Casilda, V.; Mul, G.; Fernández, J.F.; Rubio-Marcos, F.; Bañares, M.A. Monitoring the catalytic synthesis of glycerol carbonate by real-time attenuated total reflection FTIR spectroscopy. Appl. Catal. A Gen. 2011, 409–410, 106–112. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lucas-Gil, E.; Menéndez, J.; Pascual, L.; Fernández, J.F.; Rubio-Marcos, F. The Benefits of the ZnO/Clay Composite Formation as a Promising Antifungal Coating for Paint Applications. Appl. Sci. 2020, 10, 1322. https://doi.org/10.3390/app10041322
de Lucas-Gil E, Menéndez J, Pascual L, Fernández JF, Rubio-Marcos F. The Benefits of the ZnO/Clay Composite Formation as a Promising Antifungal Coating for Paint Applications. Applied Sciences. 2020; 10(4):1322. https://doi.org/10.3390/app10041322
Chicago/Turabian Stylede Lucas-Gil, Eva, Javier Menéndez, Laura Pascual, José F. Fernández, and Fernando Rubio-Marcos. 2020. "The Benefits of the ZnO/Clay Composite Formation as a Promising Antifungal Coating for Paint Applications" Applied Sciences 10, no. 4: 1322. https://doi.org/10.3390/app10041322
APA Stylede Lucas-Gil, E., Menéndez, J., Pascual, L., Fernández, J. F., & Rubio-Marcos, F. (2020). The Benefits of the ZnO/Clay Composite Formation as a Promising Antifungal Coating for Paint Applications. Applied Sciences, 10(4), 1322. https://doi.org/10.3390/app10041322