Effective Assessment of Blast-Induced Ground Vibration Using an Optimized Random Forest Model Based on a Harris Hawks Optimization Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Set
2.2. Random Forest (RF) Model
2.3. Harris Hawks Optimization (HHO) Algorithm
2.4. HHO-RF Model
2.5. Performance Metrics
2.6. Monte Carlo Simulation
3. Results and Discussion
3.1. Results of RF Model
3.2. Results of HHO-RF Model
3.3. Results of Monte Carlo Simulation
3.4. Variable Importance
3.5. Limitations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hasanipanah, M.; Monjezi, M.; Shahnazar, A.; Jahed Armaghani, D.; Farazmand, A. Feasibility of indirect determination of blast induced ground vibration based on support vector machine. Meas. J. Int. Meas. Confed. 2015, 75, 289–297. [Google Scholar] [CrossRef]
- Zhang, X.; Nguyen, H.; Bui, X.N.; Tran, Q.H.; Nguyen, D.A.; Bui, D.T.; Moayedi, H. Novel Soft Computing Model for Predicting Blast-Induced Ground Vibration in Open-Pit Mines Based on Particle Swarm Optimization and XGBoost. Nat. Resour. Res. 2019, 1–11. [Google Scholar] [CrossRef]
- Nguyen, H.; Bui, X.-N.; Tran, Q.-H.; Le, T.-Q.; Do, N.-H.; Hoa, L.T.T. Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: A case study in Vietnam. SN Appl. Sci. 2019, 1, 125. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Li, X.; Xu, M.; Li, Q. Comparisons of random forest and Support Vector Machine for predicting blasting vibration characteristic parameters. Procedia Eng. 2011, 26, 1772–1781. [Google Scholar]
- Monjezi, M.; Ghafurikalajahi, M.; Bahrami, A. Prediction of blast-induced ground vibration using artificial neural networks. Tunn. Undergr. Sp. Technol. 2011, 26, 46–50. [Google Scholar] [CrossRef]
- Gou, Y.; Shi, X.; Zhou, J.; Qiu, X.; Chen, X.; Huo, X. Attenuation assessment of blast-induced vibrations derived from an underground mine. Int. J. Rock Mech. Min. Sci. 2020, 127, 104220. [Google Scholar] [CrossRef]
- Nguyen, H.; Bui, X.N.; Tran, Q.H.; Mai, N.L. A new soft computing model for estimating and controlling blast-produced ground vibration based on Hierarchical K-means clustering and Cubist algorithms. Appl. Soft Comput. J. 2019, 77, 376–386. [Google Scholar] [CrossRef]
- Duvall, W.I.; Petkof, B. Spherical Propagation of Explosion-Generated Strain Pulses in Rock; US Department of the Interior, Bureau of Mines: Washington, DC, USA, 1959.
- Davies, B.; Farmer, I.W.; Attewell, P.B. Ground vibration from shallow sub-surface blasts. Engineer 1964, 217, 553–559. [Google Scholar]
- Langefors, U.; Kihlström, B. The Modern Technique of Rock Blasting; Wiley: Hoboken, NJ, USA, 1963; ISBN 9780470992821. [Google Scholar]
- Pal Roy, P. Putting ground vibration predictions into practice. Colliery Guard. Redhill 1993, 241, 63–67. [Google Scholar]
- Hajihassani, M.; Jahed Armaghani, D.; Marto, A.; Tonnizam Mohamad, E. Vibrations au sol prédiction dans quarry dynamitage à travers un réseau neural artificiel optimisé par une concurrence impérialiste algorithme. Bull. Eng. Geol. Environ. 2015, 74, 873–886. [Google Scholar] [CrossRef]
- Ghasemi, E.; Ataei, M.; Hashemolhosseini, H. Development of a fuzzy model for predicting ground vibration caused by rock blasting in surface mining. J. Vib. Control 2013, 19, 755–770. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, X.; Zhou, J.; Chen, X.; Miao, X.; Teng, B.; Ipangelwa, T. Prediction of Blast-Induced Rock Movement During Bench Blasting: Use of Gray Wolf Optimizer and Support Vector Regression. Nat. Resour. Res. 2019. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Fallah, A.; Armaghani, D.J.; Azizi, A.; Mohamad, E.T. Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Eng. Comput. 2019, 35, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Armaghani, D.J.; Mahdiyar, A.; Hasanipanah, M.; Faradonbeh, R.S.; Khandelwal, M.; Amnieh, H.B. Risk Assessment and Prediction of Flyrock Distance by Combined Multiple Regression Analysis and Monte Carlo Simulation of Quarry Blasting. Rock Mech. Rock Eng. 2016, 49, 3631–3641. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Ghaleini, E.N.; Tootoonchi, H.; Jahed Armaghani, D.; Haghighi, M.; Hedayat, A. Developing a new intelligent technique to predict overbreak in tunnels using an artificial bee colony-based ANN. Environ. Earth Sci. 2019, 78, 165. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Jahed Armaghani, D.; Haghighi, M.; Ghaleini, E.N. A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels. Bull. Eng. Geol. Environ. 2019, 78, 981–990. [Google Scholar] [CrossRef]
- Nguyen, H.; Bui, X.N. Predicting Blast-Induced Air Overpressure: A Robust Artificial Intelligence System Based on Artificial Neural Networks and Random Forest. Nat. Resour. Res. 2019, 28, 893–907. [Google Scholar] [CrossRef]
- Jahed Armaghani, D.; Hasanipanah, M.; Mahdiyar, A.; Abd Majid, M.Z.; Bakhshandeh Amnieh, H.; Tahir, M.M.D. Airblast prediction through a hybrid genetic algorithm-ANN model. Neural Comput. Appl. 2018, 29, 619–629. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Mitri, H.S. Evaluation method of rockburst: State-of-the-art literature review. Tunn. Undergr. Sp. Technol. 2018, 81, 632–659. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Mitri, H.S. Classification of rockburst in underground projects: Comparison of ten supervised learning methods. J. Comput. Civ. Eng. 2016, 30, 4016003. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, X.; Huang, R.; Qiu, X.; Chen, C. Feasibility of stochastic gradient boosting approach for predicting rockburst damage in burst-prone mines. Trans. Nonferrous Met. Soc. China Engl. Ed. 2016, 26, 1938–1945. [Google Scholar] [CrossRef]
- Asteris, P.G.; Armaghani, D.J.; Hatzigeorgiou, G.D.; Karayannis, C.G.; Pilakoutas, K. Predicting the shear strength of reinforced concrete beams using artificial neural networks. Comput. Concr. 2019, 24, 469–488. [Google Scholar]
- Plevris, V.; Asteris, P.G. Modeling of masonry failure surface under biaxial compressive stress using Neural Networks. Constr. Build. Mater. 2014, 55, 447–461. [Google Scholar] [CrossRef]
- Asteris, P.; Roussis, P.; Douvika, M. Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials. Sensors 2017, 17, 1344. [Google Scholar] [CrossRef] [Green Version]
- Asteris, P.G.; Apostolopoulou, M.; Skentou, A.D.; Moropoulou, A. Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars. Comput. Concr. 2019, 24, 329–345. [Google Scholar]
- Apostolopoulou, M.; Armaghani, D.J.; Bakolas, A.; Douvika, M.G.; Moropoulou, A.; Asteris, P.G. Compressive strength of natural hydraulic lime mortars using soft computing techniques. Procedia Struct. Integr. 2019, 17, 914–923. [Google Scholar] [CrossRef]
- Huang, L.; Asteris, P.G.; Koopialipoor, M.; Armaghani, D.J.; Tahir, M.M. Invasive Weed Optimization Technique-Based ANN to the Prediction of Rock Tensile Strength. Appl. Sci. 2019, 9, 5372. [Google Scholar] [CrossRef] [Green Version]
- Hajihassani, M.; Abdullah, S.S.; Asteris, P.G.; Armaghani, D.J. A Gene Expression Programming Model for Predicting Tunnel Convergence. Appl. Sci. 2019, 9, 4650. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Zhou, J.; Asteris, P.G.; Jahed Armaghani, D.; Tahir, M.M. Supervised Machine Learning Techniques to the Prediction of Tunnel Boring Machine Penetration Rate. Appl. Sci. 2019, 9, 3715. [Google Scholar] [CrossRef] [Green Version]
- Mohammadnejad, M.; Gholami, R.; Ramezanzadeh, A.; Jalali, M.E. Prediction of blast-induced vibrations in limestone quarries using Support Vector Machine. JVC/J. Vib. Control 2012, 18, 1322–1329. [Google Scholar] [CrossRef]
- Rajabi, A.M.; Vafaee, A. Prediction of blast-induced ground vibration using empirical models and artificial neural network (Bakhtiari Dam access tunnel, as a case study). J. Vib. Control 2019. [Google Scholar] [CrossRef]
- Xue, X.; Yang, X. Predicting blast-induced ground vibration using general regression neural network. JVC/J. Vib. Control 2014, 20, 1512–1519. [Google Scholar] [CrossRef]
- Shang, Y.; Nguyen, H.; Bui, X.N.; Tran, Q.H.; Moayedi, H. A Novel Artificial Intelligence Approach to Predict Blast-Induced Ground Vibration in Open-Pit Mines Based on the Firefly Algorithm and Artificial Neural Network. Nat. Resour. Res. 2019, 1–15. [Google Scholar] [CrossRef]
- Azimi, Y.; Khoshrou, S.H.; Osanloo, M. Prediction of blast induced ground vibration (BIGV) of quarry mining using hybrid genetic algorithm optimized artificial neural network. Meas. J. Int. Meas. Confed. 2019, 147, 106874. [Google Scholar] [CrossRef]
- Khandelwal, M.; Singh, T.N. Prediction of blast-induced ground vibration using artificial neural network. Int. J. Rock Mech. Min. Sci. 2009, 46, 1214–1222. [Google Scholar] [CrossRef]
- Bui, X.N.; Choi, Y.; Atrushkevich, V.; Nguyen, H.; Tran, Q.H.; Long, N.Q.; Hoang, H.T. Prediction of Blast-Induced Ground Vibration Intensity in Open-Pit Mines Using Unmanned Aerial Vehicle and a Novel Intelligence System. Nat. Resour. Res. 2019. [Google Scholar] [CrossRef]
- Nguyen, H.; Drebenstedt, C.; Bui, X.N.; Bui, D.T. Prediction of Blast-Induced Ground Vibration in an Open-Pit Mine by a Novel Hybrid Model Based on Clustering and Artificial Neural Network. Nat. Resour. Res. 2019. [Google Scholar] [CrossRef]
- Taheri, K.; Hasanipanah, M.; Golzar, S.B.; Majid, M.Z.A. A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration. Eng. Comput. 2017, 33, 689–700. [Google Scholar] [CrossRef]
- Saadat, M.; Khandelwal, M.; Monjezi, M. An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran. J. Rock Mech. Geotech. Eng. 2014, 6, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Monjezi, M.; Ahmadi, M.; Sheikhan, M.; Bahrami, A.; Salimi, A.R. Predicting blast-induced ground vibration using various types of neural networks. Soil Dyn. Earthq. Eng. 2010, 30, 1233–1236. [Google Scholar] [CrossRef]
- Khandelwal, M.; Armaghani, D.J.; Faradonbeh, R.S.; Yellishetty, M.; Majid, M.Z.A.; Monjezi, M. Classification and regression tree technique in estimating peak particle velocity caused by blasting. Eng. Comput. 2017, 33, 45–53. [Google Scholar] [CrossRef]
- Lin, Y.; Zhou, K.; Li, J. Prediction of slope stability using four supervised learning methods. IEEE Access 2018, 6, 31169–31179. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2003, 3, 18–22. [Google Scholar]
- Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena 2017, 151, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.W.; Mourshed, M.; Rezgui, Y. Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy Build. 2017, 147, 77–89. [Google Scholar] [CrossRef]
- Shaikhina, T.; Lowe, D.; Daga, S.; Briggs, D.; Higgins, R.; Khovanova, N. Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation. Biomed. Signal Process. Control 2019, 52, 456–462. [Google Scholar] [CrossRef]
- Bian, X.Q.; Zhang, L.; Du, Z.M.; Chen, J.; Zhang, J.Y. Prediction of sulfur solubility in supercritical sour gases using grey wolf optimizer-based support vector machine. J. Mol. Liq. 2018, 261, 431–438. [Google Scholar] [CrossRef]
- Mojtahedi, S.F.F.; Ebtehaj, I.; Hasanipanah, M.; Bonakdari, H.; Amnieh, H.B. Proposing a novel hybrid intelligent model for the simulation of particle size distribution resulting from blasting. Eng. Comput. 2019, 35, 47–56. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, G.; Singh, R. Stark Assessment of Lifestyle Based Human Disorders Using Data Mining Based Learning Techniques. IRBM 2017, 38, 305–324. [Google Scholar] [CrossRef]
- Gautam, R.; Kaur, P.; Sharma, M. A comprehensive review on nature inspired computing algorithms for the diagnosis of chronic disorders in human beings. Prog. Artif. Intell. 2019, 8, 401–424. [Google Scholar] [CrossRef]
- Dey, N.; Ashour, A.; Bhattacharyya, S. Applied Nature-Inspired Computing Algorithms and Case Studies. In Springer Tracts in Nature-Inspired Computing; Dey, N., Ashour, A.S., Bhattacharyya, S., Eds.; Springer: Singapore, 2020; ISBN 9789811392627. [Google Scholar]
- Ponce, H.; González-Mora, G.; Morales-Olvera, E.; Souza, P. Development of fast and reliable nature-inspired computing for supervised learning in high-dimensional data. In Studies in Computational Intelligence; Springer: New York, NY, USA, 2020; Volume 871, pp. 109–138. [Google Scholar]
- Davies, I.N.; Anireh, V.I.E.; Bennett, E.O. Stock Market Analysis and Prediction System Using Fuzzy Logic Type-2. J. Adv. Math. Comput. Sci. 2019, 2, 33–46. [Google Scholar]
- Sharma, S.; Singh, G.; Singh, D. Role and Performance of Different Traditional Classification and Nature-Inspired Computing Techniques in Major Research Areas. ICST Trans. Scalable Inf. Syst. 2019, 6, 158419. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Bednarz, J.C. Cooperative hunting in Harris’ hawks (Parabuteo unicinctus). Science (80-) 1988, 239, 1525–1527. [Google Scholar] [CrossRef]
- Mahdiyar, A.; Jahed Armaghani, D.; Koopialipoor, M.; Hedayat, A.; Abdullah, A.; Yahya, K. Practical Risk Assessment of Ground Vibrations Resulting from Blasting, Using Gene Expression Programming and Monte Carlo Simulation Techniques. Appl. Sci. 2020, 10, 472. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, E.; Wei, H.; Li, C.; Qiao, Q.; Armaghani, D.J. Random forests and cubist algorithms for predicting shear strengths of rockfill materials. Appl. Sci. 2019, 9, 1621. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Shi, X.; Zhou, J.; Rao, D.; Chen, X.; Dong, W.; Miao, X.; Ipangelwa, T. Feasibility of the indirect determination of blast-induced rock movement based on three new hybrid intelligent models. Eng. Comput. 2019. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Koopialipoor, M.; Marto, A.; Yagiz, S. Application of several optimization techniques for estimating TBM advance rate in granitic rocks. J. Rock Mech. Geotech. Eng. 2019, 11, 779–789. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Naderi, R.; Kashir, J.; Noorani, S.A.; Zeynali Aaq Qaleh, A. Prediction of blast-produced ground vibration using particle swarm optimization. Eng. Comput. 2017, 33, 173–179. [Google Scholar] [CrossRef]
- Kaloop, M.R.; Kumar, D.; Samui, P.; Gabr, A.R.; Hu, J.W.; Jin, X.; Roy, B. Particle Swarm Optimization algorithm-Extreme Learning Machine (PSO-ELM) model for predicting resilient modulus of stabilized aggregate bases. Appl. Sci. 2019, 9, 3221. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhou, J.; Jahed Armaghani, D.; Tahir, M.M.; Pham, B.T.; Huynh, V. Van A Combination of Feature Selection and Random Forest Techniques to Solve a Problem Related to Blast-Induced Ground Vibration. Appl. Sci. 2020, 10, 869. [Google Scholar] [CrossRef] [Green Version]
- Van Dao, D.; Trinh, S.H.; Ly, H.B.; Pham, B.T. Prediction of compressive strength of geopolymer concrete using entirely steel slag aggregates: Novel hybrid artificial intelligence approaches. Appl. Sci. 2019, 9, 1113. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Shi, X.; Zhang, S.; Chen, H.; Zhou, J.; Yu, Z.; Huang, P. Fiber-Reinforced Cemented Paste Backfill: The Effect of Fiber on Strength Properties and Estimation of Strength Using Nonlinear Models. Materials (Basel) 2020, 13, 718. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, E.; Sari, M.; Ataei, M. Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines. Int. J. Rock Mech. Min. Sci. 2012, 52, 163–170. [Google Scholar] [CrossRef]
- Zhou, J.; Aghili, N.; Ghaleini, E.N.; Bui, D.T.; Tahir, M.M.; Koopialipoor, M. A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network. Eng. Comput. 2019, 1–11. [Google Scholar] [CrossRef]
- Sari, M.; Ghasemi, E.; Ataei, M. Stochastic modeling approach for the evaluation of backbreak due to blasting operations in open pit mines. Rock Mech. Rock Eng. 2014, 47, 771–783. [Google Scholar] [CrossRef]
- Pham, B.T.; Nguyen, M.D.; Van Dao, D.; Prakash, I.; Ly, H.B.; Le, T.T.; Ho, L.S.; Nguyen, K.T.; Ngo, T.Q.; Hoang, V.; et al. Development of artificial intelligence models for the prediction of Compression Coefficient of soil: An application of Monte Carlo sensitivity analysis. Sci. Total Environ. 2019, 679, 172–184. [Google Scholar] [CrossRef]
- Morin, M.A.; Ficarazzo, F. Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz-Ram model. Comput. Geosci. 2006, 32, 352–359. [Google Scholar] [CrossRef]
- Ru, Z.; Zhao, H.; Zhu, C. Probabilistic evaluation of drilling rate index based on a least square support vector machine and Monte Carlo simulation. Bull. Eng. Geol. Environ. 2019, 78, 3111–3118. [Google Scholar] [CrossRef]
Number | Qmax | Qtotal | DH | DV | B | T | f | PPV |
---|---|---|---|---|---|---|---|---|
1 | 160 | 1440 | 125.30 | 52.30 | 5 | 50 | 5 | 0.343 |
2 | 312 | 3120 | 311.90 | 42.00 | 7 | 25 | 8 | 0.753 |
3 | 312 | 3120 | 389.40 | 108.00 | 7 | 25 | 8 | 0.572 |
4 | 312 | 3120 | 362.30 | 86.00 | 7 | 25 | 8 | 1.214 |
5 | 312 | 3120 | 199.20 | 30.00 | 7 | 25 | 8 | 2.148 |
6 | 350 | 1050 | 114.70 | 16.80 | 5 | 100 | 5 | 0.417 |
7 | 350 | 1050 | 143.50 | 52.30 | 5 | 100 | 6 | 0.609 |
8 | 350 | 1050 | 133.30 | 62.00 | 5 | 100 | 5 | 0.194 |
9 | 370 | 2150 | 70.30 | 42.00 | 7 | 25 | 8 | 4.754 |
10 | 370 | 2150 | 52.40 | 30.00 | 7 | 25 | 8 | 4.585 |
11 | 370 | 2150 | 101.20 | 54.00 | 7 | 25 | 6 | 1.554 |
12 | 380 | 1550 | 162.40 | 73.00 | 4 | 75 | 5 | 0.102 |
13 | 380 | 1550 | 147.80 | 62.00 | 4 | 75 | 5 | 0.201 |
14 | 380 | 1550 | 104.90 | 28.60 | 4 | 75 | 5 | 0.463 |
15 | 380 | 1550 | 336.20 | 58.90 | 5 | 50 | 6 | 0.101 |
16 | 390 | 2730 | 120.90 | 46.90 | 4 | 100 | 5 | 0.143 |
17 | 390 | 2730 | 69.90 | 53.90 | 6 | 75 | 8 | 0.394 |
18 | 390 | 2730 | 50.40 | 30.00 | 6 | 75 | 8 | 0.126 |
19 | 390 | 2730 | 137.80 | 63.10 | 5 | 50 | 7 | 0.318 |
20 | 390 | 2730 | 63.30 | 27.60 | 5 | 50 | 7 | 0.657 |
21 | 390 | 2730 | 128.90 | 73.00 | 5 | 50 | 7 | 0.435 |
22 | 400 | 3600 | 110.60 | 16.80 | 6 | 50 | 6 | 0.898 |
23 | 400 | 3600 | 47.10 | 16.90 | 6 | 50 | 6 | 5.371 |
24 | 400 | 3600 | 137.90 | 52.30 | 6 | 50 | 6 | 0.815 |
25 | 400 | 3600 | 31.50 | 16.80 | 6 | 50 | 6 | 5.436 |
26 | 456 | 1860 | 284.10 | 85.30 | 6 | 50 | 6 | 0.368 |
27 | 456 | 1860 | 300.50 | 102.40 | 6 | 50 | 6 | 0.270 |
28 | 456 | 1860 | 330.40 | 58.90 | 6 | 50 | 6 | 0.144 |
29 | 460 | 4600 | 443.60 | 108.00 | 7 | 25 | 8 | 0.510 |
30 | 460 | 4600 | 363.30 | 42.00 | 7 | 25 | 8 | 0.476 |
31 | 460 | 2760 | 323.60 | 30.00 | 6 | 50 | 6 | 0.203 |
32 | 460 | 2760 | 313.20 | 86.00 | 6 | 50 | 6 | 0.391 |
33 | 468 | 936 | 85.30 | 54.00 | 6 | 50 | 6 | 2.486 |
34 | 468 | 936 | 75.50 | 30.00 | 6 | 50 | 6 | 3.350 |
35 | 494 | 3952 | 122.60 | 62.10 | 5 | 100 | 5 | 0.608 |
36 | 494 | 3952 | 66.70 | 28.60 | 5 | 100 | 6 | 3.029 |
37 | 494 | 3952 | 183.20 | 28.90 | 5 | 100 | 5 | 0.105 |
38 | 494 | 1482 | 170.40 | 46.90 | 5 | 50 | 6 | 0.195 |
39 | 494 | 1482 | 132.50 | 63.10 | 5 | 50 | 6 | 0.413 |
40 | 494 | 5434 | 149.20 | 73.30 | 6 | 25 | 7 | 0.923 |
41 | 494 | 5434 | 96.40 | 27.60 | 6 | 25 | 7 | 1.413 |
42 | 494 | 1482 | 142.90 | 73.30 | 5 | 50 | 6 | 0.231 |
43 | 494 | 1482 | 81.50 | 51.90 | 5 | 50 | 6 | 0.806 |
44 | 494 | 1482 | 80.20 | 27.60 | 5 | 50 | 6 | 0.598 |
45 | 507 | 7650 | 193.50 | 53.00 | 5 | 100 | 6 | 0.106 |
46 | 507 | 7650 | 235.20 | 86.00 | 5 | 100 | 6 | 0.196 |
47 | 507 | 7650 | 332.30 | 86.00 | 5 | 100 | 8 | 0.292 |
48 | 532 | 6084 | 73.00 | 40.00 | 6 | 25 | 7 | 2.372 |
49 | 532 | 6084 | 124.20 | 73.00 | 6 | 25 | 7 | 1.442 |
50 | 550 | 4400 | 123.40 | 53.90 | 5 | 75 | 8 | 1.562 |
51 | 550 | 4400 | 89.50 | 42.00 | 5 | 75 | 8 | 1.279 |
Input Variables | Function |
---|---|
T | Discrete ({0, 25, 50, 75, 100}, {0.06, 0.17, 0.34, 0.24, 0.19}) |
B | Discrete ({4, 5, 6, 7}, {0.17, 0.41, 0.36, 0.06}) |
f | Discrete ({5, 6, 7, 8}, {0.15, 0.42, 0.18, 0.24}) |
DV | Weibull (A, B): A = 65.02, B = 2.62 |
DH | Logarithmic (mean, std. dev): mean = 5.06 std. dev = 0.54 |
Qtotal | Weibull (A, B): A = 4613.05 B = 2.15 |
Qmax | Logarithmic (mean, std. dev): mean = 6.64 std. dev = 0.58 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Shi, X.; Zhou, J.; Chen, X.; Qiu, X. Effective Assessment of Blast-Induced Ground Vibration Using an Optimized Random Forest Model Based on a Harris Hawks Optimization Algorithm. Appl. Sci. 2020, 10, 1403. https://doi.org/10.3390/app10041403
Yu Z, Shi X, Zhou J, Chen X, Qiu X. Effective Assessment of Blast-Induced Ground Vibration Using an Optimized Random Forest Model Based on a Harris Hawks Optimization Algorithm. Applied Sciences. 2020; 10(4):1403. https://doi.org/10.3390/app10041403
Chicago/Turabian StyleYu, Zhi, Xiuzhi Shi, Jian Zhou, Xin Chen, and Xianyang Qiu. 2020. "Effective Assessment of Blast-Induced Ground Vibration Using an Optimized Random Forest Model Based on a Harris Hawks Optimization Algorithm" Applied Sciences 10, no. 4: 1403. https://doi.org/10.3390/app10041403
APA StyleYu, Z., Shi, X., Zhou, J., Chen, X., & Qiu, X. (2020). Effective Assessment of Blast-Induced Ground Vibration Using an Optimized Random Forest Model Based on a Harris Hawks Optimization Algorithm. Applied Sciences, 10(4), 1403. https://doi.org/10.3390/app10041403