Experimental and Numerical Investigations on the Local Direct Leakage Process of Rotary Regenerative Air Preheater
Abstract
:1. Introduction
2. Experimentation
2.1. Experimental System
2.2. Experimental Principles
3. Simulation
3.1. Physical Model and Governing Equations
- Both the spacing of the adjacent sealing sheets and the gap size between sector plate and sealing sheet top end keep constants at a position of short length along the radial direction.
- The fluid is an incompressible Newtonian fluid.
- The fluid flow is in a turbulent state.
3.2. Turbulence Model and Boundary Conditions
3.3. Meshing and Independence Verification
4. Results and Discussion
4.1. Effect of Pressure
4.2. Effect of Sealing Gap
4.3. Effect of Sealing Sheets Number
4.4. Effect of the Spacing of Adjacent Sealing Sheets
4.5. Effect of the Bending Angle of Sealing Sheets
4.6. Correlation for Orifice Coefficient
5. Uncertainty Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
a | van der Waals constant |
A | leakage area, (m2) |
b | van der Waals constant |
Cd | orifice coefficient |
d | spacing of adjacent sealing sheets, (mm) |
h1 | straight height of sealing sheet, (mm) |
h2 | total height of sealing sheet, (mm) |
H | height of flow path, (mm) |
L | length of flow path, (mm) |
Qm | mass flow rate, (kg·s−1) |
Qexp | mass flow rate of experimental measurement, (kg·s−1) |
Qide | mass flow rate of ideal gas, (kg·s−1) |
p | pressure, (Pa) |
pin | inlet pressure of flow path, (Pa) |
Δp | pressure difference, (kPa) |
Δptot | total pressure difference, (kPa) |
R | molar gas constant, (J·K−1·mol−1) |
T | fluid temperature, (K) |
U | fluid velocity, (m·s−1) |
Vm | molar volume of the actual gas, (m3·mol−1) |
W | width of flow path, (mm) |
x | gap size, (mm) |
Z | number of sealing sheet |
Greek symbols | |
α | bending angle of sealing sheet, (°) |
λ | thermal conductivity energy dissipation, (W·m−1·K−1) |
ρ | fluid density, (kg·m−3) |
υ | kinematic viscosity, (m2·s−1) |
Φ | dissipation function |
Subscripts | |
d | discharge |
tot | total |
exp | experiment |
ide | ideal |
References
- Bp Energy. Bp Energy Outlook—2019 Editionn; British Petroleum: London, UK, 2019. [Google Scholar]
- Warren, I. Ljungstrom Heat Exchangers for Waste Heat Recovery. J. Heat Recovery Syst. 1982, 2, 257–271. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhao, L.L.; Zhou, Q.T.; Xu, Z.G.; Kim, H.T. Exergy Analysis on the Irreversibility of Rotary Air Preheater in Thermal Power Plant. Energy 2008, 33, 647–656. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhao, L.L.; Xu, Z.G.; Chun, W.G.; Kim, H.T. The Study on Heat Transfer Model of Tri-Sectional Rotary Air Preheater Based on the Semi-Analytical Method. Appl. Therm. Eng. 2008, 28, 1882–1888. [Google Scholar] [CrossRef]
- Drobnič, B.; Oman, J.; Tuma, M. A Numerical Model for the Analyses of Heat Transfer and Leakages in a Rotary Air Preheater. Int. J. Heat Mass Transf. 2006, 49, 5001–5009. [Google Scholar] [CrossRef]
- Skiepko, T. Effect of Reduction in Seal Clearances on Leakages in a Rotary Heat Exchanger. Heat Recovery Syst. Chp 1989, 9, 553–559. [Google Scholar] [CrossRef]
- Skiepko, T. Experimental Results Concerning Seal Clearances in Some Rotary Heat Exchangers. Heat Recovery Syst. Chp 1988, 8, 577–581. [Google Scholar] [CrossRef]
- Lidia, F.; Claudio, Z.; Valerio, M. Aerodynamic Study for Air to Gas Leakage Reduction in a Typical Rotary Regenerative Air Preheater of Coal-Fired Steam Generators. Infect. Immun. 2010, 68, 994–998. [Google Scholar]
- Wang, H.Y.; Bi, X.L.; Zhao, L.L.; Zhou, Q.T.; Kim, H.T.; Xu, Z.G. A Study on Thermal Stress Deformation Using Analytical Methods Based on the Temperature Distribution of Storage Material in a Rotary Air-Preheater. Appl. Therm. Eng. 2009, 29, 2350–2357. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhao, L.L.; Xu, Z.G.; Chun, W.G.; Kim, H.T. Analysis on thermal stress deformation of rotary air-preheater in a thermal power plant. Korea J. Chem. Eng. 2009, 26, 833–839. [Google Scholar] [CrossRef]
- Wang, L.; Deng, L.; Tang, C.; Fan, Q.; Wang, C.; Che, D. Thermal Deformation Prediction Based on the Temperature Distribution of the Rotor in Rotary Air-Preheater. Appl. Therm. Eng. 2015, 90, 478–488. [Google Scholar] [CrossRef]
- Bu, Y.; Wang, L.; Chen, X.; Wei, X.; Deng, L.; Che, D. Numerical Analysis of Abs Deposition and Corrosion on a Rotary Air Preheater. Appl. Therm. Eng. 2018, 131, 669–677. [Google Scholar] [CrossRef]
- Cai, M.; Wang, X.; Zhao, S.; He, S. A Study on the Direct Leakage of Rotary Air Preheater with Multiple Seals. Appl. Therm. Eng 2013, 59, 576–586. [Google Scholar] [CrossRef]
- Faris, G.J. Clearance Monitoring Probe for Rotary Regenerative Heat Exchanger. U.S. Patent No. 3,968,569, 13 July 1976. [Google Scholar]
- Skiepko, T. Method of Monitoring and Measuring Seal Clearances in a Rotary Heat Exchanger. Heat Recovery Syst. Chp 1988, 8, 469–473. [Google Scholar] [CrossRef]
- Skiepko, T. Indirect Estimation of Leakage Distribution in Steam Boiler Rotary Regenerators. Heat Transf. Eng. 1997, 18, 56–81. [Google Scholar] [CrossRef]
- Skiepko, T. Some Essential Principles for Adjustment of Seal Clearances in Rotary Regenerators. Heat Transf. Eng. 2007, 14, 27–43. [Google Scholar] [CrossRef]
- Skiepko, T.; Shah, R.K. Modeling and Effect of Leakages on Heat Transfer Performance of Fixed Matrix Regenerators. Int. J. Heat Mass Transf. 2005, 48, 1608–1632. [Google Scholar] [CrossRef]
- Maharaj, A.; Schmitz, W.; Naidoo, R.; Jestin, L.; Fuls, W.; Pronobis, M. A Numerical Study of Air Preheater Leakage. Energy 2015, 92, 87–99. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, J.; Tian, Z.; Wang, J. Estimation of the Direct Leakage of Rotary Air Preheaters Based on Temperature Distribution Modeling. Int. J. Heat Mass Transf. 2019, 134, 119–130. [Google Scholar] [CrossRef]
- Du, X.; Shi, Y.; Wang, X. Coupled Characterization and Experimental Verification of Heat Transfer and Air Leakage in a Quad-Sectional Rotary Air Preheater. Appl. Therm. Eng. 2019, 159, 113923. [Google Scholar] [CrossRef]
- Jianqiang, G.; Shufang, T.; Xianling, L.; Zhifu, H. Influence of Air Leakage of Different Parts of the Air Preheater to Boiler Efficiency. Electr. Power Sci. Eng. 2011, 6, TK227. [Google Scholar]
- Kožíšek, M.; Příhoda, J.; Fürst, J.; Straka, P. Numerical Simulation of Transitional Flows with Heat Transfer. AIP Conf. Proc. 2016, 1745, 020029. [Google Scholar]
- Betchelor, G.K. An Introduction to Fluid Dynamics; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Shen, W.; Tong, J. Engineering Thermodynamics, 5th ed.; High Education Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Wu, D.; Burton, R.; Schoenau, G. An Empirical Discharge Coefficient Model for Orifice Flow. Int. J. Fluid Power 2002, 3, 13–19. [Google Scholar] [CrossRef]
- Hunt, J.C.R.; Vassilicos, J.C. Turbulence Structure and Vortex Dynamics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Zhang, Z.; Dong, Z. Viscous Fluid Mechanics; Tsinghua University Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Moffat, R.J. Describing the Uncertainties in Experimental Results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. [Google Scholar] [CrossRef] [Green Version]
Description | x/mm | Δptot/kPa | Z | d/mm | α/° |
---|---|---|---|---|---|
Value range | 15~25 | 3~7 | 1~3 | 150~450 | −50~50 |
α | A | B | C | D | R2 |
---|---|---|---|---|---|
25° | 0.17234 | 0.00238 | 0.0914 | −0.2396 | 0.924 |
−25° | 0.20501 | 0.0124 | 0.14665 | −0.2452 | 0.951 |
Parameter | Device Used | Device Range | Device Accuracy | Uncertainty |
---|---|---|---|---|
Gap size | Tape | 0–5 m | ±0.001 m | 0.02% |
Static pressure | Pressure gauge | 0–99,990 Pa | ±10 Pa | 0.01% |
Air temperature | Thermocouple | -50–150 °C | ±0.1 °C | 0.05% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Li, D.; Pu, H.; Wang, L.; He, Y.; Bu, Y.; Che, D. Experimental and Numerical Investigations on the Local Direct Leakage Process of Rotary Regenerative Air Preheater. Appl. Sci. 2020, 10, 1523. https://doi.org/10.3390/app10041523
Zhu H, Li D, Pu H, Wang L, He Y, Bu Y, Che D. Experimental and Numerical Investigations on the Local Direct Leakage Process of Rotary Regenerative Air Preheater. Applied Sciences. 2020; 10(4):1523. https://doi.org/10.3390/app10041523
Chicago/Turabian StyleZhu, Hua, Dechao Li, Henglin Pu, Limin Wang, Yang He, Yufan Bu, and Defu Che. 2020. "Experimental and Numerical Investigations on the Local Direct Leakage Process of Rotary Regenerative Air Preheater" Applied Sciences 10, no. 4: 1523. https://doi.org/10.3390/app10041523
APA StyleZhu, H., Li, D., Pu, H., Wang, L., He, Y., Bu, Y., & Che, D. (2020). Experimental and Numerical Investigations on the Local Direct Leakage Process of Rotary Regenerative Air Preheater. Applied Sciences, 10(4), 1523. https://doi.org/10.3390/app10041523