Evaluation of Conifer Wood Biochar as Growing Media Component for Citrus Nursery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site, Plant Material, Nursery, and Training System
2.2. Growing Media Composition and Experimental Design
2.3. Physico-Chemical Characteristics of the Growing Media
2.4. Seedlings Growth Monitoring
2.5. Statistical Analyses
3. Results and Discussions
3.1. Chemical and Physical Properties of Growth Media
3.2. Evolution of Plant Growth
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moreno, P.; Ambrós, S.; Albiach-Martí, M.R.; Guerri, J.; Peña, L. Citrus tristeza virus: A pathogen that changed the course of the citrus industry. Mol. Plant Pathol. 2008, 9, 251–268. [Google Scholar] [CrossRef]
- Cambra, M.; Gorris, M.T.; Romàn, M.P.; Terrada, E.; Garnsey, S.M.; Camarasa, E.; Olmos, A.; Colomer, M. Routine detection of Citrus Tristeza Virus by direct immunoprinting-ELISA method using specific monoclonal and recombinant antibodies. In Proceedings of the 14th IOCV Conference, Campinas, Brazil, 13–18 September 1998; Int. Organization of Citrus Virologists, 2000; pp. 34–41. [Google Scholar]
- Urrestarazu, M.; Mazuela, P.C.; Màrtinez, G.A. Effect of substrate reutilization on yield and properties of melon and tomato crops. J. Plant Nutr. 2008, 31, 2031–2043. [Google Scholar] [CrossRef]
- International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar that is Used in Soil; IBI biochar standards: Canandaigua, NY, USA, 2012; p. 47. [Google Scholar]
- Fascella, G. Growing substrates alternative to peat for ornamental plants. In Soilles Culture—Use of Substrates for the Production of Quality Horticultural Crops; Asaduzzaman, M.D., Ed.; InTech: Rijeka, Croazia, 2015; pp. 47–68. [Google Scholar]
- Bella, S.; Spina, A.; Salamonte, A.; Fascella, G. Severe alterations caused by the indigenous pyralid Denticera divisella (Dup.) on the cultivated Euphorbia x lomi Rauh (Euphorbiaceae) in Sicily, with notes on some agronomic aspects (Lepidoptera: Pyralidae). Fragmenta entomologica 2017, 49, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Bridgwater, A.V.; Meier, D.; Radlein, D. An overview of fast pyrolysis of biomass. Org. Geochem. 1999, 30, 1479–1493. [Google Scholar] [CrossRef]
- Laine, J.; Simoni, S.; Calles, R. Preparation of activated carbon from coconut shell in a small scale cocurrent flow rotary kiln. Chem. Eng. Commun. 1991, 99, 15–23. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product up grading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Nieto, A.; Gascó, G.; Paz-Ferreiro, J.; Fernández, J.M.; Plaza, C.; Méndez, A. The effect of pruning waste and biochar addition on brown peat based growing media properties. Sci. Hortic. 2016, 199, 142–148. [Google Scholar] [CrossRef]
- Méndez, A.; Cárdenas-Aguiar, E.; Paz-Ferreiro, J.; Plaza, C.; Gascó, G. The effect of sewage sludge biochar on peat-based growing media. Biol. Agric. Hortic. 2017, 33, 40–51. [Google Scholar] [CrossRef]
- Wildman, J.; Derbyshire, F. Origins and functions of macroporosity in activated carbons from coal and wood precursors. Fuel 1991, 70, 661–665. [Google Scholar] [CrossRef]
- Gu, M.; Li, Q.; Steele, P.H.; Niu, G.; Yu, F. Growth of ‘Fireworks’ gomphrena in substrates amended with biochar. J. Food Agric. Environ. 2013, 11, 819–821. [Google Scholar]
- Zabaniotou, A.; Stavropoulos, G.; Skoulou, V. Activated carbon from olive kernels in a two-stage process: Industrial Improvement. Bioresour. Technol. 2008, 99, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Sohi, S.; Loez-Capel, S.; Krull, E.; Bol, R. Biochar’s roles in soil and climate change: A review of research needs. CSIRO Land Water Sci. Rep. 2009, 5, 1–57. [Google Scholar]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; van der Velde, M.; Diafas, I.; Parsons, C. Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; Joint Research Centre, Institute for Environment and Sustainability: Ispra, Italy, 2009. [Google Scholar]
- Major, J.; Lehmann, J.; Rondon, M.; Goodale, C. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Glob. Chang. Biol. 2009, 16, 1366–1379. [Google Scholar] [CrossRef]
- Álvarez, M.L.; Gascó, G.; Plaza, C.; Paz-Ferreiro, J.; Méndez, A. Hydrochars from biosolids and urban wastes as substitute materials for peat. Land Degrad. Dev. 2017, 28, 2268–2276. [Google Scholar] [CrossRef]
- Asai, H.; Samson, B.K.; Stephan, H.M.; Songyikhangsuthor, K.; Homma, K.; Kiyono, Y.; Inoue, Y.; Shiraiwa, T.; Horie, T. Biochar amendment techniques for upland rice production in northern Laos. Field Crop. Res. 2009, 111, 81–84. [Google Scholar] [CrossRef]
- Graber, E.R.; Meller-Harel, Y.; Kolton, M.; Cytryn, E.; Silber, A.; David, D.R.; Tsechansky, L.; Borenshtein, M.; Elad, Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Elad, Y.; David, D.R.; Harel, Y.M.; Borenshtein, M.; Kalifa, H.B.; Silber, A.; Graber, E.R. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 2010, 100, 913–921. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Choppala, G.K.; Bolan, N.S.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 2011, 348, 439–451. [Google Scholar] [CrossRef]
- Dumroese, R.K.; Heiskanen, J.; Englund, K.; Tervahauta, A. Pelleted biochar: Chemical and physical properties show potential use as a substrate in container nurseries. Biomass Bioenergy 2011, 35, 2018–2027. [Google Scholar] [CrossRef]
- Landis, T.D.; Tinus, R.W.; McDonald, S.E.; Barnett, J.P. Containers and growing media. In The Container Tree Nursery Manual; USDA Forest Service Agriculture Handbook 674; USADA: Washington, DC, USA, 1990; pp. 1–67. [Google Scholar]
- Klingebiel, A.A.; Montgomery, P.H. Land Capability Classification; Agriculture Handbook No. 210; USDA: Washington, DC, USA, 1961. [Google Scholar]
- Richards, L.A. Pressure membrane apparatus-construction and use. Agric. Eng. 1947, 28, 451–454. [Google Scholar]
- Tian, Y.; Sun, X.; Li, H.; Wang, H.; Wang, L.; Cao, J.; Zhang, L. Biochar made from green waste as peat substitute in growth media for Calathea rotundifolia cv. Fasciata. Sci. Hortic. 2012, 143, 15–18. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen total. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA SSSA: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Springer, U.; Klee, J. Prüfung der Leistungsf¨ahigkeit von einigen wichtigeren Verfahren zur Bestimmung des Kohlenstoffs mittels Chromschwefelsäure sowie Vorschlag einer neuen Schnellmethode. Zeitschrift für Pflanzenernährung Düngung, Bodenkunde Pflanzenernähr Z. Düng Bodenk 1954, 64, 1–26. [Google Scholar] [CrossRef]
- Soil Improves and Growing Media—Determination of pH; EN 13037; CEN, European Committee for Standardization: Brussels, Belgium, 1999.
- Soil Improves and Growing Media—Determination of Electrical Conductivity; EN 13038; CEN, European Committee for Standardization: Brussels, Belgium, 1999.
- Moldes, A.; Cendòn, Y.; Barral, M.T. Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design. Bioresour. Technol. 2007, 98, 3069–3075. [Google Scholar] [CrossRef] [PubMed]
- Abad, M.; Noguera, P.; Bures, S. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef]
- Abad, M.; Noguera, P.; Puchades, R.; Maquieira, A.; Vicente, N. Physico-chemical and chemical properties of some coconut coir dusts use as peat substitute for containerized ornamental plants. Bioresour. Technol. 2002, 82, 241–245. [Google Scholar] [CrossRef]
- Li, H.; McCoy, C.W.; Syvertsen, J.P. Controlling factors of environmental flooding, soil pH and Diaprepes abbreviatus (L.) root weevil feeding in citrus: Larval survival and larval growth. Appl. Soil Ecol. 2007, 35, 553–565. [Google Scholar] [CrossRef]
- Jayasinghe, G.Y.; Arachchi, I.D.L.; Tokashiki, Y. Evaluation of the use of synthetic red soil aggregates (SRA) and zeolite as substrate for ornamental plant production as a peat alternative. Resour. Conserv. Recycl. 2010, 54, 1412–1418. [Google Scholar] [CrossRef]
- De Lucia, B.; Cristiano, G.; Vecchietti, L.; Bruno, L. Effect of different rates of composted organic amendment on urban soil properties, growth and nutrient status of three Mediterranean native hedge species. Urban For. Urban Green. 2013, 12, 537–545. [Google Scholar] [CrossRef]
- Benito, M.; Masaguer, A.; De Antonio, R.; Moliner, A. Use of pruning waste compost as a component in soilless growing media. Bioresour. Technol. 2005, 96, 597–603. [Google Scholar] [CrossRef]
- Garcìa-Gòmez, A.; Bernal, M.P.; Roig, A. Growth of ornamental plants in two composts prepared from agroindustrial wastes. Bioresour. Technol. 2002, 83, 81–87. [Google Scholar] [CrossRef]
- De Boodt, M.; Verdonck, O. The physical properties of the substrates in horticulture. Acta Hortic. 1972, 26, 37–44. [Google Scholar] [CrossRef]
- Chong, C.; Cline, R.A.; Rinker, D.L. Growth and mineral nutrition status of containerized woody species in media amended with spent mushroom compost. J. Am. Soc. Hortic Sci. 1991, 116, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, F.; Gascò, J.M.; Hernàndez-Apaolaza, L. Use of pine bark and sewage sludge compost as components of substrates for Pinus pinea and Cupressus arizonica production. J. Plant Nutr. 2002, 25, 129–141. [Google Scholar] [CrossRef]
- Wright, R.D. Pour through nutrient extraction procedure. HortScience 1986, 21, 227–229. [Google Scholar]
- Hernàndez-Apaolaza, L.; Gascò, M.A.; Gascò, J.M.; Guerrero, F. Reuse of waste materials as growing media for ornamental plants. Bioresour. Technol. 2005, 96, 125–131. [Google Scholar] [CrossRef]
- Corti, C.; Crippa, L.; Genevini, P.L.; Centemero, M. Compost use in plant nurseries: Hydrological and physicochemical characteristics. Compos. Sci. Util. 1998, 6, 35–45. [Google Scholar] [CrossRef]
- Kämpf, A.N. Substrato. Produção Comercial De Plantas Ornamentais; Guaíba: Agropecuária, Brazil, 2000; p. 254. [Google Scholar]
- Givi, J.; Prasherb, S.O.; Patelb, R.M. Evaluation of pedotransfer in predicting the soil water contents at field capacity and wilting point. Agric. Water Manag. 2004, 70, 83–96. [Google Scholar] [CrossRef]
- Bunt, A.C. Modern Potting Composts: A Manual on the Preparation and Use of Growing Media for Pot Plant; George Allen & Unwin Ltd.: London, UK, 1976. [Google Scholar]
- Hicklenton, P.R.; Rodd, V.; Warman, P.R. The effectiveness and consistency of source-separated municipal solid waste and bark compost as components of container growing media. Sci. Hortic. 2001, 91, 365–378. [Google Scholar] [CrossRef]
- Ma, P.Q.; Tang, X.L.; Wen, W.; Wei, Y.R.; Peng, C.J. Effects of the stroma nutritive soil on the growth of the citrus seedlings. South China Fruits 2000, 29, 6–7. [Google Scholar]
- Girardi, E.A.; Mourão Filho, F.A.A.; Graf, C.C.D.; Olic, F.B. Influence of soluble and slow-release fertilizers on vegetative growth of containerized citrus nursery trees. J. Plant Nutr. 2005, 28, 1465–1480. [Google Scholar] [CrossRef]
- Bevington, K.B.; Castle, W.S. Annual root growth pattern of young citrus trees in relation to shoot growth, soil temperature, and soil water content. J. Am. Soc. Hortic. Sci. 1985, 110, 840–845. [Google Scholar]
- Taylor, H.M.; Ratliff, L.F. Root elongation rates of cotton and peanuts as a function of soil strength and soil water content. Soil Sci. 1969, 108, 113–119. [Google Scholar] [CrossRef]
- Shierlaw, J.; Alston, A.M. Effect of soil compactation on root growth and uptake of phosphorus. Plant Soil 1984, 77, 15–28. [Google Scholar] [CrossRef]
Growing Medium a | Total Nitrogen (N) (g kg−1) | Organic Matter (%) | pH | Electrical Conductivity (dS/m−1 25° C) | ||
---|---|---|---|---|---|---|
Start | Start | Start | End | Start | End | |
A | 1.96 ± 0.07 b | 7.03 ± 0.03 c | 5.08 ± 0.22 b | 5.20 ± 0.22 b | 1.64 ± 0.02 C | 0.99 ± 0.04 A |
B | 2.24 ± 0.05 ab | 16.96 ± 0.07 a | 7.00 ± 0.18 a | 5.30 ± 0.78 b | 1.52 ± 0.06 C | 0.41 ± 0.03 B |
C | 1.68 ± 0.02 b | 8.69 ± 0.12 c | 6.00 ± 0.16 ab | 4.95 ± 0.20 b | 1.75 ± 0.04 C | 0.47 ± 0.10 B |
D | 2.80 ± 0.04 a | 15.72 ± 0.18 a | 6.05 ± 0.14 ab | 5.02 ± 0.25 b | 1.67 ± 0.06 C | 0.69 ± 0.07 B |
E | 2.94 ± 0.06 a | 16.34 ± 0.27 a | 7.36 ± 0.11 a | 7.37 ± 0.33 a | 3.15 ± 0.20 B | 0.85 ± 0.04 B |
F | 3.08 ± 0.81 a | 11.07 ± 0.08 b | 7.56 ± 0.19 a | 7.18 ± 0.14 a | 4.37 ± 0.06 A | 0.85 ± 0.05 B |
G | 2.24 ± 0.03 ab | 10.34 ± 0.03 b | 4.66 ± 0.17 b | 5.37 ± 0.11 b | 4.37 ± 0.08 A | 0.75 ± 0.06 B |
Growing Medium a | Container Weight (kg) | Bulk Density (g cm−3) | Water at Field Saturation (%) | Water Content at Field Capacity (%) | Water Content at Permanent Wilting Point (%) | Total Available Water (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Start | Start | End | Start | End | Start | End | Start | End | Start | End | |
A | 6.24 ± 0.27 B | 0.73 ± 0.05 AB | 0.72 ± 0.10 a | 38.76 ± 1.49 B | 41.02 ± 4.30 | 17.71 ± 2.73 BC | 20.01 ± 0.16 BC | 15.94 ± 0.26 | 14.16 ± 1.57 | 3.76 ± 2.82 B | 5.85 ± 1.53 BC |
B | 6.15 ± 0.31 B | 0.63 ± 0.11 AB | 0.60 ± 0.08 ab | 45.18 ± 2.74 AB | 45.53 ± 0.61 | 25.71 ± 1.24 A | 26.47 A ± 1.35 A | 15.55 ± 1.10 | 14.41 ± 1.36 | 10.16 ± 1.54 A | 12.05 ± 0.25 A |
C | 6.32 ± 0.46 AB | 0.64 ± 0.14 AB | 0.64 ± 0.05 ab | 41.31 ± 1.43 AB | 44.45 ± 3.47 | 20.70 ± 1.54 ABC | 21.86 ± 0.55 B | 16.30 ± 0.88 | 13.62 ± 1.02 | 4.40 ± 1.83 AB | 8.23 ± 0.61 ABC |
D | 6.13 ± 0.30 B | 0.56 ± 0.10 AB | 0.66 ± 0.03 ab | 47.78 ± 0.16 A | 43.78 ± 2.89 | 22.95 ± 0.65 AB | 23.31 ± 1.35 AB | 17.17 ± 0.53 | 14.05 ± 0.72 | 5.77 ± 0.25 AB | 9.25 ± 0.70 AB |
E | 6.5 ± 0.19 AB | 0.84 ± 0.12 A | 0.58 ± 0.03 b | 40.50 ± 0.47 AB | 44.93 ± 2.00 | 20.82 ± 0.59 ABC | 22.47 ± 1.15 B | 14.92 ± 0.84 | 14.53 ± 0.89 | 5.90 ± 0.24 AB | 7.93 ± 2.02 ABC |
F | 6.92 ± 0.13 A | 0.64 ± 0.10 AB | 0.69 ± 0.05 ab | 44.01 ± 4.08 AB | 41.52 ± 3.24 | 21.71 ± 1.74 ABC | 19.77 ± 0.92 BC | 15.95 ± 2.61 | 14.59 ± 0.65 | 5.76 ± 2.47 AB | 5.17 ± 0.61 BC |
G | 5.96 ± 0.80 B | 0.46 ± 0.07 B | 0.57 ± 0.04 b | 45.72 ± 0.66 AB | 42.64 ± 4.65 | 16.33 ± 1.41 C | 17.52 ± 1.38 C | 14.29 ± 2.67 | 12.52 ± 1.46 | 2.05 ± 1.56 B | 4.99 ± 1.47 C |
Growing Medium a | Total Porosity (vol %) | Air Space (vol %) | Water Filled Porosity (vol %) | |||
---|---|---|---|---|---|---|
Start | End | Start | End | Start | End | |
A | 28.65 ± 1.99 | 18.73 ± 1.59 | 21.03 ± 2.00 ab | 12.94 ± 1.36 A | 8.62 ± 1.21 ab | 5.80 ± 0.23 B |
B | 28.22 ± 0.69 | 19.09 ± 1.31 | 18.18 ± 3.27 b | 11.01 ± 0.90 AB | 10.04 ± 2.59 a | 8.08 ± 0.46 AB |
C | 27.560 ± 1.95 | 18.31 ± 1.86 | 20.13 ± 4.12 ab | 10.27 ± 0.59 AB | 8.43 ± 2.25 ab | 8.04 ± 1.46 AB |
D | 24.375 ± 3.67 | 18.94 ± 0.79 | 17.31 ± 1.52 b | 8.94 ± 1.18 B | 10.06 ± 2.15 a | 10.00 ± 1.56 A |
E | 24.51 ± 1.48 | 16.58 ± 1.97 | 16.78 ± 0.80 b | 8.82 ± 0.91 B | 8.73 ± 1.18 ab | 7.76 ± 1.87 AB |
F | 24.28 ± 0.71 | 17.32 ± 0.70 | 17.06 ± 0.43 b | 9.53 ± 0.14 B | 8.23 ± 1.12 ab | 7.79 ± 0.82 AB |
G | 27.11 ± 2.87 | 18.02 ± 0.80 | 23.43 ± 2.65 a | 12.96 ± 0.93 A | 7.37 ± 0.41 b | 5.06 ± 0.79 B |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferlito, F.; Torrisi, B.; Allegra, M.; Stagno, F.; Caruso, P.; Fascella, G. Evaluation of Conifer Wood Biochar as Growing Media Component for Citrus Nursery. Appl. Sci. 2020, 10, 1618. https://doi.org/10.3390/app10051618
Ferlito F, Torrisi B, Allegra M, Stagno F, Caruso P, Fascella G. Evaluation of Conifer Wood Biochar as Growing Media Component for Citrus Nursery. Applied Sciences. 2020; 10(5):1618. https://doi.org/10.3390/app10051618
Chicago/Turabian StyleFerlito, Filippo, Biagio Torrisi, Maria Allegra, Fiorella Stagno, Paola Caruso, and Giancarlo Fascella. 2020. "Evaluation of Conifer Wood Biochar as Growing Media Component for Citrus Nursery" Applied Sciences 10, no. 5: 1618. https://doi.org/10.3390/app10051618
APA StyleFerlito, F., Torrisi, B., Allegra, M., Stagno, F., Caruso, P., & Fascella, G. (2020). Evaluation of Conifer Wood Biochar as Growing Media Component for Citrus Nursery. Applied Sciences, 10(5), 1618. https://doi.org/10.3390/app10051618