Classification of Brainwaves for Sleep Stages by High-Dimensional FFT Features from EEG Signals
Abstract
:1. Introduction
- NREM stages in the R & K criteria (S1, S2, S3, and S4) are referred to as stages N1, N2, and N3 in the AASM criteria.
- In the AASM criteria, deep sleep (N3) is a combination of the S3 and S4 stages of the R & K criteria.
- Movement time (MT) is eliminated as a sleep stage in the AASM criteria.
2. Materials and Methods
2.1. Experimental Data
Sleep-EDF Dataset
2.2. Feature Extraction with Fast Fourier Transform (FFT)
2.3. Feature Selection and Optimization
2.4. Classification Evaluation
3. Experimental Results
3.1. Classification of Sleep-EDF Dataset
3.2. Classification of Sleep-EDF Dataset Expanded (197 Recordings)
4. Discussions and Conclusions
- More effective methods of feature extraction from the original EEG signal (e.g., wavelet transform)
- Application of filters (e.g., band-pass filter) and noise reduction algorithms
- Identification of better classifier algorithms (e.g., random forest, adaptive boosting, and convolutional neural network)
- Improvement of class imbalance by under- and/or over-sampling (e.g., SMOTE)
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Touchette, É.; Petit, D.; Seguin, J.R.; Boivin, M.; Tremblay, R.E.; Montplaisir, J.Y. Associations Between Sleep Duration Patterns and Behavioral/Cognitive Functioning at School Entry. Sleep 2007, 30, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.P.; Stickgold, R. Sleep, Memory, and Plasticity. Annu. Rev. Psychol. 2006, 57, 139–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Estévez, D.; Moret-Bonillo, V. Identification of Electroencephalographic Arousals in Multichannel Sleep Recordings. IEEE Trans. Biomed. Eng. 2011, 58, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Keenan, S.A. Handbook of Clinical Neurophysiology, An Overview of Polysomnography; Elsevier B.V.: Amsterdam, The Netherlands, 2005; Volume 6, Chapter 3; p. 18. [Google Scholar]
- Billiard, M.; Bae, C.; Avidan, A. Sleep Medicine; Smith, H.R., Comella, C.L., Hogl, B.L., Eds.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Kaniusas, E. Biomedical Signals and Sensors I; Springer: Berlin, Germany; pp. 1–26. [CrossRef] [Green Version]
- Aboalayon, K.A.I.; Faezipour, M. Multi-Class SVM Based on Sleep Stage Identification Using EEG Signal. Proceedings of the 2014 IEEE Healthcare Innovation Conference (HIC), Piscataway, NJ, USA, 8–10 October 2014; pp. 181–184. [Google Scholar]
- Thorpy, M.J. The International Classification Of Sleep Disorders: Diagnostic and Coding Manual. Rev.Ed; One Westbrook Corporate Center, Suite 920: Westchester, IL, USA, 2001. [Google Scholar]
- Rechtschaffen, A.; Kales, A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects; National Government Publication: Los Angeles, CA, USA, 1968. [Google Scholar]
- Iber, C.; Medicine, A.A.o.S. The AASM Manual for The Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; American Academy of Sleep Medicine: Darien, IL, USA, 2007. [Google Scholar]
- Hobson, J.A. Sleep is of The Brain, by The Brain and For The Brain. Nature 2005, 437, 1254–1256. [Google Scholar] [CrossRef] [PubMed]
- Marshall, L.; Helgadottir, H.; Molle, M.; Born, J. Boosting Slow Oscillations During Sleep Potentiates Memory. Nature 2006, 444, 610–613. [Google Scholar] [CrossRef] [PubMed]
- Norman, R.G.; Pal, I.; Stewart, C.; Walsleben, J.A.; Rapoport, D.M. Interobserver Agreement Among Sleep Scorers From Different Centers in a Large Dataset. Sleep 2000, 23, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Ronzhina, M.; Janousek, O.; Kolarova, J.; Novakova, M.; Honzik, P.; Provaznik, I. Sleep Scoring Using Artificial Neural Networks. Sleep Med. Rev. 2012, 16, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Li, Y.; Wen, P.P. Analysis and Classification of Sleep Stages Based on Difference Visibility Graphs From A Single-Channel EEG Signal. IEEE J. Biomed. Health Inform. 2014, 18, 1813–1821. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-S.; Lin, C.-L.; Ko, L.-W.; Liu, S.-Y.; Su, T.-P.; Lin, C.-T. Knowledge-based Identification of Sleep Stages Based on Two Forehead Electroencephalogram Channels. Front. Neurosci. 2014, 8, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboalayon, K.A.I.; Faezipour, M.; Almuhammadi, W.S.; Moslehpour, S. Sleep Stage Classification Using EEG Signal Analysis: A Comprehensive Survey and New Investigation. Entropy 2016, 18, 272. [Google Scholar] [CrossRef]
- Braun, E.T.; Silvera, T.L.T.D.; Kozakevicius, A.D.J.; Rodrigues, C.R.; Giovani, B. Sleep Stages Classification Using Spectral Based Statistical Moments as Features. Revista de Informática Teórica e Aplicada 2018, 25. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.R.; Subasi, A. A Decision Support System for Automated Identification of Sleep Stages from Single-Channel EEG Signals. Knowl.-Based Syst. 2017, 128, 115–124. [Google Scholar] [CrossRef]
- Liang, S.-F.; Kuo, C.-E.; Hu, Y.-H.; Pan, Y.-H.; Wang, Y.-H. Automatic Stage Scoring of Single-Channel Sleep EEG by Using Multiscale Entropy and Autoregressive Models. IEEE Trans. Instrum. Meas. 2012, 61, 1649–1657. [Google Scholar] [CrossRef]
- Nakamura, T.; Adjei, T.; Alqurashi, Y.; Looney, D.; Morrell, M.J.; Mandic, D.P. Complexity science for sleep stage classification from EEG. In Proceedings of the International Joint Conference on Neural Networks, Anchorage, AK, USA, 14–19 May 2017. [Google Scholar]
- Yildirim, O.; Baloglu, U.B.; Acharya, U.R. A Deep Learning Model for Automated Sleep Stages Classification Using PSG Signals. Int. J. Environ. Res. Public Health 2019, 16, 599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Fahoum, A.S.; Al-Fraihat, A.A. Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains. ISRN Neurosci. 2014, 2014, 730218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, W.J.; Skarda, C.A. Spatial EEG patterns, non-linear dynamics and perception: the neo-Sherringtonian view. Brain Res. 1985, 357, 147–175. [Google Scholar] [CrossRef] [Green Version]
- Nussbaumer, H.J. Fast Fourier Transform and Convolution Algorithms; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar] [CrossRef]
- Wen, T.; Zhang, Z. Effective and Extensible Feature Extraction Method Using Genetic Algorithm-based Frequency-Domain Feature Search for Epileptic EEG Multiclassification. Medicine (Baltimore) 2017, 96, e6879. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Guo, B.; Shen, Y.; Tang, X.; Zhang, T.; Li, D.; Jiang, Z. Sleep staging algorithm based on multichannel data adding and multifeature screening. Comput Methods Programs Biomed. 2019, 187, 105253. [Google Scholar] [CrossRef] [PubMed]
- Timplalexis, C.; Diamantaras, K.; Chouvarda, I. Classification of Sleep Stages for Healthy Subjects and Patients with Minor Sleep Disorders. In Proceedings of the 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), Athens, Greece, 28–30 October 2019; pp. 344–351. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intel. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
Bands | Frequencies (Hz) | Amplitude (µV) |
---|---|---|
Delta | 0.5–3.5 | 20–100 |
Theta | 3.5–7.5 | 10 |
Alpha | 7.5–12 | 2–100 |
Beta | 12–30 | 5–10 |
Gamma | >31 | - |
# of Classes | AWA | REM | S1 | S2 | S3 | S4 |
---|---|---|---|---|---|---|
6 | 74,827 | 11,848 | 4,848 | 27,292 | 5075 | 3773 |
5 | 74,827 | 11,848 | 4,848 | 27,292 | 8848 | |
4 | 74,827 | 11,848 | 32,140 | 8848 | ||
3 | 74,827 | 11,848 | 40,988 | |||
2 | 74,827 | 52,836 |
Method | Length of Epoch (s) | # of Epochs | # of Classes | Accuracy (%) |
---|---|---|---|---|
Nakamura et al. 2017 | 30 | 126,699 | 6 | 86.60 |
5 | 88.60 | |||
4 | 91.00 | |||
3 | 94.50 | |||
2 | 97.40 | |||
Yildirim et al. 2019 [22] | 30 | 127,512 | 6 | 89.43 |
5 | 90.48 | |||
4 | 92.24 | |||
3 | 94.23 | |||
2 | 97.85 | |||
Our method (Pz_Oz) | 30 | 127,663 | 6 | 90.17 |
5 | 91.42 | |||
4 | 92.24 | |||
3 | 94.36 | |||
2 | 97.79 | |||
Our method (Fpz_Cz) | 30 | 127,663 | 6 | 89.70 |
5 | 88.57 | |||
4 | 90.02 | |||
3 | 92.69 | |||
2 | 97.13 | |||
Our method (Pz_Oz and Fpz_Cz) | 30 | 127,663 | 6 | 90.77 |
5 | 91.73 | |||
4 | 92.82 | |||
3 | 94.41 | |||
2 | 97.88 |
ID | Accuracy (%) | ID | Accuracy (%) | ID | Accuracy (%) | ID | Accuracy (%) |
---|---|---|---|---|---|---|---|
SC4001 | 94.17 | SC4252 | 92.77 | SC4522 | 94.24 | SC4812 | 91.26 |
SC4002 | 92.49 | SC4261 | 89.25 | SC4531 | 89.22 | SC4821 | 92.67 |
SC4011 | 94.27 | SC4262 | 92.43 | SC4532 | 92.68 | SC4822 | 89.17 |
SC4012 | 93.43 | SC4271 | 90.37 | SC4541 | 93.68 | ST7011 | 75.56 |
SC4021 | 94.11 | SC4272 | 91.59 | SC4542 | 90.28 | ST7012 | 81.39 |
SC4022 | 92.86 | SC4281 | 91.27 | SC4551 | 90.97 | ST7021 | 83.62 |
SC4031 | 95.88 | SC4282 | 91.42 | SC4552 | 94.29 | ST7022 | 79.29 |
SC4032 | 94.44 | SC4291 | 91.54 | SC4561 | 84.57 | ST7041 | 58.73 |
SC4041 | 90.51 | SC4292 | 91.67 | SC4562 | 90.25 | ST7042 | 65.79 |
SC4042 | 91.58 | SC4301 | 91.48 | SC4571 | 89.66 | ST7051 | 43.61 |
SC4051 | 95.29 | SC4302 | 92.94 | SC4572 | 92.47 | ST7052 | 84.77 |
SC4052 | 92.51 | SC4311 | 91.99 | SC4581 | 89.89 | ST7061 | 80.09 |
SC4061 | 95.33 | SC4312 | 89.40 | SC4582 | 88.17 | ST7062 | 85.53 |
SC4062 | 94.27 | SC4321 | 88.92 | SC4591 | 91.41 | ST7071 | 79.06 |
SC4071 | 93.71 | SC4322 | 92.26 | SC4592 | 85.54 | ST7072 | 81.05 |
SC4072 | 93.70 | SC4331 | 91.51 | SC4601 | 92.68 | ST7081 | 83.10 |
SC4081 | 92.56 | SC4332 | 94.24 | SC4602 | 86.79 | ST7082 | 81.77 |
SC4082 | 90.92 | SC4341 | 89.21 | SC4611 | 87.08 | ST7091 | 75.45 |
SC4091 | 91.59 | SC4342 | 96.42 | SC4612 | 93.10 | ST7092 | 77.99 |
SC4092 | 90.59 | SC4351 | 94.34 | SC4621 | 84.74 | ST7101 | 80.34 |
SC4101 | 93.38 | SC4352 | 90.59 | SC4622 | 91.20 | ST7102 | 75.67 |
SC4102 | 94.84 | SC4362 | 92.08 | SC4631 | 91.06 | ST7111 | 82.40 |
SC4111 | 92.12 | SC4371 | 91.13 | SC4632 | 93.04 | ST7112 | 83.43 |
SC4112 | 95.32 | SC4372 | 86.79 | SC4641 | 94.62 | ST7121 | 79.76 |
SC4121 | 92.54 | SC4381 | 93.39 | SC4642 | 92.58 | ST7122 | 82.65 |
SC4122 | 91.56 | SC4382 | 93.23 | SC4651 | 89.64 | ST7131 | 85.80 |
SC4131 | 92.97 | SC4401 | 91.94 | SC4652 | 85.62 | ST7132 | 76.47 |
SC4141 | 95.12 | SC4402 | 93.40 | SC4661 | 85.77 | ST7141 | 75.50 |
SC4142 | 95.31 | SC4411 | 92.92 | SC4662 | 88.53 | ST7142 | 72.74 |
SC4151 | 92.97 | SC4412 | 89.87 | SC4671 | 91.07 | ST7151 | 37.03 |
SC4152 | 93.25 | SC4421 | 95.23 | SC4672 | 93.35 | ST7152 | 79.94 |
SC4161 | 90.29 | SC4422 | 92.07 | SC4701 | 88.10 | ST7161 | 48.93 |
SC4162 | 91.04 | SC4431 | 91.50 | SC4702 | 92.39 | ST7162 | 74.06 |
SC4171 | 92.20 | SC4432 | 92.08 | SC4711 | 88.52 | ST7171 | 79.37 |
SC4172 | 86.52 | SC4441 | 88.84 | SC4712 | 93.23 | ST7172 | 77.20 |
SC4181 | 92.34 | SC4442 | 90.77 | SC4721 | 83.95 | ST7181 | 82.92 |
SC4182 | 91.00 | SC4451 | 91.24 | SC4722 | 87.05 | ST7182 | 54.30 |
SC4191 | 90.25 | SC4452 | 90.94 | SC4731 | 88.42 | ST7191 | 47.16 |
SC4192 | 91.21 | SC4461 | 94.06 | SC4732 | 87.96 | ST7192 | 87.10 |
SC4201 | 96.54 | SC4462 | 93.78 | SC4741 | 92.12 | ST7201 | 66.16 |
SC4202 | 95.04 | SC4471 | 90.90 | SC4742 | 90.71 | ST7202 | 69.62 |
SC4211 | 92.40 | SC4472 | 85.81 | SC4751 | 94.07 | ST7211 | 79.40 |
SC4212 | 93.67 | SC4481 | 90.11 | SC4752 | 87.98 | ST7212 | 77.28 |
SC4221 | 88.17 | SC4482 | 93.31 | SC4761 | 92.82 | ST7221 | 82.95 |
SC4222 | 89.88 | SC4491 | 93.88 | SC4762 | 89.00 | ST7222 | 82.78 |
SC4231 | 93.08 | SC4492 | 92.37 | SC4771 | 90.33 | ST7241 | 65.62 |
SC4232 | 86.76 | SC4501 | 91.16 | SC4772 | 90.19 | ST7242 | 62.94 |
SC4241 | 92.30 | SC4502 | 93.77 | SC4801 | 91.42 | ||
SC4242 | 94.92 | SC4511 | 90.53 | SC4802 | 91.43 | ||
SC4251 | 96.34 | SC4512 | 92.85 | SC4811 | 91.79 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delimayanti, M.K.; Purnama, B.; Nguyen, N.G.; Faisal, M.R.; Mahmudah, K.R.; Indriani, F.; Kubo, M.; Satou, K. Classification of Brainwaves for Sleep Stages by High-Dimensional FFT Features from EEG Signals. Appl. Sci. 2020, 10, 1797. https://doi.org/10.3390/app10051797
Delimayanti MK, Purnama B, Nguyen NG, Faisal MR, Mahmudah KR, Indriani F, Kubo M, Satou K. Classification of Brainwaves for Sleep Stages by High-Dimensional FFT Features from EEG Signals. Applied Sciences. 2020; 10(5):1797. https://doi.org/10.3390/app10051797
Chicago/Turabian StyleDelimayanti, Mera Kartika, Bedy Purnama, Ngoc Giang Nguyen, Mohammad Reza Faisal, Kunti Robiatul Mahmudah, Fatma Indriani, Mamoru Kubo, and Kenji Satou. 2020. "Classification of Brainwaves for Sleep Stages by High-Dimensional FFT Features from EEG Signals" Applied Sciences 10, no. 5: 1797. https://doi.org/10.3390/app10051797
APA StyleDelimayanti, M. K., Purnama, B., Nguyen, N. G., Faisal, M. R., Mahmudah, K. R., Indriani, F., Kubo, M., & Satou, K. (2020). Classification of Brainwaves for Sleep Stages by High-Dimensional FFT Features from EEG Signals. Applied Sciences, 10(5), 1797. https://doi.org/10.3390/app10051797