Secure Transmission in Cognitive Wiretap Networks with Full-Duplex Receivers
Abstract
:1. Introduction
1.1. Background
1.2. Motivation and Contribution
- We first derive closed-form and simple asymptotic expressions for the secrecy outage probability (SOP) and the secrecy throughput (ST) of the FD receiver cognitive wiretap networks with MRC-ZFB/MRT-SC-ZFB and MRC/MRT-SC schemes, respectively [31]. Moreover, we also explore the impact of the various system parameters on the SOP and ST, i.e., the number of antennas and the interference threshold at Relay and Bob.
- We further derive the asymptotic closed-form expressions for the SOP and the secrecy diversity order and secrecy coding gain are achieved under two different scenarios, namely Scenario I: and fixed , and Scenario II: and , which reveals that the influence of system performance under the high signal-to-noise ratio (SNR). Two distinct scenarios can achieve the same secrecy diversity () under Scenario I and zero secrecy diversity under Scenario II, where and denote the average SNR of the main channel and the eavesdropping channel, respectively.
- Through the derivation and analysis of the SOP and ST, it has been verified that the MRC-ZFB/MRT-SC-ZFB scheme of FD operation at Bob outperforms MRC/MRT-SC scheme of HD operation in terms of enhancing secrecy performance of CRNs. The attained asymptotic expressions shed lights on the impact of distinct system parameters, i.e., increasing interference threshold of the primary network within a certain range and the number of antennas at the Relay and Bob. The beamforming of AN design can effectively improve the secrecy performance of the considered networks and the secrecy performance of the considered scheme with FD operation is mainly affected by the secrecy coding gain.
2. System Model
2.1. MRC/MRT-SC with HD Scenario
2.2. MRC-ZFB/MRT-SC-ZFB with FD Scenario
3. Secrecy Performance Analysis
3.1. MRC/MRT-SC with HD Scenario
3.2. MRC-ZFB/MRT-SC-ZFB with FD Scenario
4. High SNR Analysis and Secrecy Throughput
4.1. High SNR Analysis
4.1.1. Scenario I: and Fixed
4.1.2. Scenario Ii: and
4.2. Secrecy Throughput
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
References
- Mitola, J. Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2000. [Google Scholar]
- Zhang, T.; Cai, Y.; Huang, Y.; Duong, T.Q.; Yang, W. Secure full-duplex spectrum-sharing wiretap networks with different antenna reception schemes. IEEE Trans. Commun. 2017, 65, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Al-Qahtani, F.; Wu, Q.; Zhong, C.; Wang, J.; Alnuweiri, H. Outage analysis of spectrum sharing relay systems with multiple secondary destinations under primary user’s interference. IEEE Trans. Veh. Technol. 2014, 63, 3456–3464. [Google Scholar] [CrossRef]
- Oliveira, G.; Fernandez, E.; Mafra, S.; Montejo-Sánchez, S. Physical layer security in cognitive radio networks using improper gaussian signaling. IEEE Commun. Lett. 2018, 22, 1886–1889. [Google Scholar] [CrossRef]
- Biliary, E.; Goldsmith, A.; Greenstein, L.; Mandayam, N.; Poor, H.V. Principles of Cognitive Radio; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Shah, H.A.; Koo, I. A novel physical layer security scheme in OFDM-based cognitive radio networks. IEEE Access 2018, 6, 29486–29498. [Google Scholar] [CrossRef]
- Ding, X.; Zou, Y.; Zhang, G.; Chen, X.; Wang, X.; Hanzo, L. The security-reliability tradeoff of multiuser scheduling-aided energy harvesting cognitive radio networks. IEEE Trans. Commun. 2019, 67, 3890–3904. [Google Scholar] [CrossRef] [Green Version]
- Yan, P.; Zou, Y.; Zhu, J. Energy-aware multiuser scheduling for physical-layer security in energy-harvesting underlay cognitive radio systems. IEEE Trans. Veh. Technol. 2018, 67, 2084–2096. [Google Scholar] [CrossRef]
- Nandan, N.; Majhi, S.; Wu, H. Maximizing secrecy capacity of underlay MIMO-CRN through bi-directional zero-forcing beamforming. IEEE Trans. Wirel. Commun. 2018, 17, 5327–5337. [Google Scholar] [CrossRef]
- Qian, Y.; Chen, M.; Chen, J.; Hossain, M.S.; Alamri, A. Secure enforcement in cognitive internet of vehicles. IEEE Internet Things J. 2018, 5, 1242–1250. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, Y.; Cai, Y.; Yang, W. Secure transmission in spectrum sharing relaying networks with multiple antennas. IEEE Commum. Lett. 2016, 20, 824–827. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, Y.; Cai, Y.; Zhong, C.; Yang, W.; Karagiannidis, G.K. Secure multiantenna cognitive wiretap networks. IEEE Trans. Veh. Technol. 2017, 66, 4059–4072. [Google Scholar]
- Sultana, A.; Zhao, L.; Fernando, X. Efficient resource allocation in device-to-device communication using cognitive radio technology. IEEE Trans. Veh. Technol. 2017, 66, 10024–10034. [Google Scholar] [CrossRef]
- Li, M.; Liao, W.; Chen, X.; Sun, J.; Huang, X.; Li, P. Economic-robust transmission opportunity auction for D2D communications in cognitive mesh assisted cellular networks. IEEE Trans. Mob. Comp. 2018, 17, 1806–1819. [Google Scholar] [CrossRef]
- Song, Y.; Yang, W.; Xiang, Z.; Wang, B.; Cai, Y. Secure transmission in mmWave NOMA networks with cognitive power allocation. IEEE Access 2019, 7, 76104–76119. [Google Scholar] [CrossRef]
- Wei, C.; Yang, W.; Cai, Y.; Tang, X.; Yin, T. Secrecy outage performance of buffer-aided underlay cognitive relay networks with outdated CSI. In Proceedings of the 2018 IEEE 7th CIC International Conference on Communications in China (CIC ICCC), Beijing, China, 16–18 August 2018; pp. 168–173. [Google Scholar]
- Xiang, Z.; Yang, W.; Pan, G.; Cai, Y.; Song, Y. Physical layer security in cognitive radio inspired NOMA network. IEEE J. Sel. Top. Signal Process 2019, 13, 700–714. [Google Scholar] [CrossRef]
- Jameel, F.; Wyne, S.; Kaddoum, G.; Duong, T.Q. A comprehensive survey on cooperative relaying and jamming strategies for physical layer security. IEEE Commun. Surv. Tuts. 2019, 21, 2734–2771. [Google Scholar] [CrossRef] [Green Version]
- Amjad, M.; Akhtar, F.; Rehmani, M.H.; Reisslein, M.; Umer, T. Full-duplex communication in cognitive radio networks: A survey. IEEE Commun. Surv. Tuts. 2017, 19, 2158–2191. [Google Scholar] [CrossRef]
- Shang, Z.; Zhang, T.; Cai, Y.; Liu, Y.; Yang, W. Secure Spectrum-Sharing Wiretap Networks With Full-Duplex Relaying. IEEE Access 2019, 7, 181610–181625. [Google Scholar] [CrossRef]
- Nguyen, N.; Kundu, C.; Ngo, H.Q.; Duong, T.Q.; Canberk, B. Secure full-duplex small-cell networks in a spectrum sharing environment. IEEE Access 2016, 4, 3087–3099. [Google Scholar] [CrossRef]
- Li, M.; Huang, Y.; Yin, H.; Wang, Y.; Cai, C. Improving the security and spectrum efficiency in overlay cognitive full-duplex wireless networks. IEEE Access 2019, 7, 68359–68372. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, G.; Wang, H. On physical-layer security in underlay cognitive radio networks with full-duplex wireless-powered secondary system. IEEE Access 2016, 4, 3887–3893. [Google Scholar] [CrossRef]
- Goel, S.; Negi, R. Guaranteeing secrecy using artificial noise. IEEE Trans. Wirel. Commun. 2008, 7, 2180–2189. [Google Scholar] [CrossRef]
- Yang, N.; Elkashlan, M.; Duong, T.Q.; Yuan, J.; Malaney, R. Optimal transmission with artificial noise in MISOME wiretap channels. IEEE Trans. Veh. Technol. 2016, 65, 2170–2181. [Google Scholar] [CrossRef]
- Al-Nahari, A.; Geraci, G.; Al-Jamali, M.; Ahmed, M.H.; Yang, N. Beamforming with artificial noise for secure MISOME cognitive radio transmissions. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1875–1889. [Google Scholar] [CrossRef]
- Tolossa, Y.J.; Vuppala, S.; Kaddoum, G.; Abreu, G. On the uplink secrecy capacity analysis in D2D-enabled cellular network. IEEE Syst. J. 2018, 12, 2297–2307. [Google Scholar] [CrossRef]
- Zhou, F.; Chu, Z.; Sun, H.; Hu, R.Q.; Hanzo, L. Artificial noise aided secure cognitive beamforming for cooperative MISO-NOMA using SWIPT IEEE J. Sel. Areas Commun. 2018, 36, 918–931. [Google Scholar] [CrossRef]
- Koyluoglu, O.O.; Koksal, C.E.; el Gamal, H. On secrecy capacity scaling in wireless networks. IEEE Trans. Inf. Theory 2012, 58, 3000–3015. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Cai, Y.; Zhou, X.; Yang, W.; Yang, W. When does relay transmission give a more secure connection in wireless ad hoc networks. IEEE Trans. Inf. Forensics Secur. 2014, 9, 624–632. [Google Scholar] [CrossRef]
- Kong, L.; Vuppala, S.; Kaddoum, G. Secrecy analysis of random MIMO wireless networks 0ver α-μ fading channels. IEEE Trans. Veh. Technol. 2018, 67, 11654–11666. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, X.; Shen, W. Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE J. Sel. Areas Commun. 2013, 31, 2099–2111. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Chen, Z.; Zhang, D.; Fang, J. A full-duplex Bob in the MIMO gaussian wiretap channel: Scheme and performance. IEEE Signal Process. Lett. 2016, 23, 107–111. [Google Scholar] [CrossRef]
- Hoang, T.M.; Duong, T.Q.; Suraweera, H.A.; Tellambura, C.; Poor, H.V. Cooperative beamforming and user selection for improving the security of relay-aided systems. IEEE Trans. Commun. 2015, 63, 5039–5051. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Coon, J.P.; di Renzo, M. Secrecy outage analysis for downlink transmissions in the presence of randomly located eavesdroppers. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1195–1206. [Google Scholar] [CrossRef] [Green Version]
- Elkashlan, M.; Wang, L.; Duong, T.Q.; Karagiannidis, G.K.; Nallanathan, A. On the security of cognitive radio networks. IEEE Trans. Veh. Technol. 2015, 64, 3790–3795. [Google Scholar] [CrossRef]
- Tang, X.; Cai, Y.; Yang, W.; Huang, Y.; Duong, T.Q.; Yang, W. Secrecy outage analysis of buffer-aided multi-antenna relay systems without eavesdropper’s CSI. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Zhong, C.; Jiang, X.; Qu, F.; Zhang, Z. Multi-Antenna Wireless Legitimate Surveillance Systems: Design and Performance Analysis. IEEE Trans. Wirel. Commun. 2017, 16, 4585–4599. [Google Scholar] [CrossRef] [Green Version]
- Basilevsky, A. Applied Matrix Algebra in the Statistical Sciences; Courier Corporation: North Chelmsford, MA, USA, 2013. [Google Scholar]
- Shang, Z.; Zhang, T.; Liu, Y.; Cai, Y.; Yang, W. Secrecy Performance Analysis of Cognitive Radio Networks with Full-duplex Relaying. In Proceedings of the 2019 IEEE 8th CIC International Conference on Communications in China (ICCC), Changchun, China, 11–13 August 2019; pp. 700–705. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Academic: San Diego, CA, USA, 2007. [Google Scholar]
- Yang, M.; Zhang, B.; Huang, Y.; Yang, N.; Costa, D.B.d.; Guo, D. Secrecy enhancement of multiuser MISO networks using OSTBC and artificial noise. IEEE Trans. Veh. Technol. 2017, 66, 11394–11398. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Yang, W.; Guo, J.; Liu, Y.; Shang, X. Secure transmission for differential quadrature spatial modulation with artificial noise. IEEE Access 2019, 7, 7641–7650. [Google Scholar] [CrossRef]
- Hu, J.; Cai, Y.; Yang, N.; Yang, W. A new secure transmission scheme with outdated antenna selection. IEEE Trans. Inf. Forensics Secur. 2015, 10, 2435–2446. [Google Scholar] [CrossRef]
- Afana, A.; Asghari, V.; Ghrayeb, A.; Affes, S. Cooperative relaying in spectrum-sharing systems with beamforming and interference constraints. In Proceedings of the 2012 IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cesme, Turkey, 17–20 June 2012; pp. 429–433. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, Z.; Zhang, T.; Cai, Y.; Yang, W.; Wu, H.; Zhang, Y.; Tao, L. Secure Transmission in Cognitive Wiretap Networks with Full-Duplex Receivers. Appl. Sci. 2020, 10, 1840. https://doi.org/10.3390/app10051840
Shang Z, Zhang T, Cai Y, Yang W, Wu H, Zhang Y, Tao L. Secure Transmission in Cognitive Wiretap Networks with Full-Duplex Receivers. Applied Sciences. 2020; 10(5):1840. https://doi.org/10.3390/app10051840
Chicago/Turabian StyleShang, Zhihui, Tao Zhang, Yueming Cai, Weiwei Yang, Hao Wu, Yu Zhang, and Liwei Tao. 2020. "Secure Transmission in Cognitive Wiretap Networks with Full-Duplex Receivers" Applied Sciences 10, no. 5: 1840. https://doi.org/10.3390/app10051840
APA StyleShang, Z., Zhang, T., Cai, Y., Yang, W., Wu, H., Zhang, Y., & Tao, L. (2020). Secure Transmission in Cognitive Wiretap Networks with Full-Duplex Receivers. Applied Sciences, 10(5), 1840. https://doi.org/10.3390/app10051840