New Hybrid Tomato Cultivars: An NMR-Based Chemical Characterization
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Tomatoe Cultivars
2.3. Extraction Procedure
2.4. NMR Analyses
2.5. Tree Clustering Analysis
3. Results
3.1. Tomato Hydroalcoholic Fraction
3.2. Tomato Organic Fraction
3.3. Hydroalcoholic and Organic Fractions: A Comparison Among Cultivars
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 20 January 2020).
- Atanassova, B.; Georgiev, H. Expression of heterosis by hybridization. In Genetic Improvement of Solanaceous Crop Volume 2: Tomatoes; Razdan, M.K., Mattoo, A.K., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 113–151. [Google Scholar]
- Duvick, D.N. Commercial strategies for exploiting heterosis. In Proceedings of the International Symposium “The Genetics and Exploitation of Heterosis in Crops”, Mexico City, Mexico, 17–22 August 1997; pp. 206–207. [Google Scholar]
- Malmendal, A.; Amoresano, C.; Trotta, R.; Lauri, R.; De Tito, S.; Novellino, E.; Randazzo, A. NMR spectrometers as “Magnetic Tongues”: Prediction of sensory descriptors in canned tomatoes. J. Agric. Food Chem. 2011, 59, 10831–10838. [Google Scholar] [CrossRef]
- Sánchez Pérez, E.M.; López, J.G.; Iglesias, M.J.; Ortiz, F.L.; Toresano, F.; Camacho, F. HRMAS-nuclear magnetic resonance spectroscopy characterization of tomato “flavor varieties” from Almería. Food Res. Int. 2011, 44, 3212–3221. [Google Scholar] [CrossRef]
- Oruna-Concha, M.-J.; Methven, L.; Blumenthal, H.; Young, C.; Mottram, D.S. Differences in Glutamic acid and 5-Ribonucleotide contents between flesh and pulp of tomatoes and the relationship with umami taste. J. Agric. Food Chem. 2007, 55, 5776–5780. [Google Scholar] [CrossRef]
- Mannina, L.; Sobolev, A.P.; Viel, S. Liquid state 1H high field NMR in food analysis. Prog. Nucl. Magn. Res. Spectr. 2012, 66, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, A.P.; Thomas, F.; Donarski, J.; Ingallina, C.; Circi, S.; Cesare Marincola, F.; Capitani, D.; Mannina, L. Use of NMR applications to tackle future food fraud issues. Trends Food Sci. Technol. 2019, 91, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Masetti, O.; Ciampa, A.; Nisini, L.; Sequi, P.; Dell’Abate, M.T. A multifactorial approach in characterizing geographical origin of Sicilian cherry tomatoes using 1H-NMR profiling. Food Res. Int. 2017, 100, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Deborde, C.; Maucourt, M.; Baldet, P.; Bernillon, S.; Biais, B.; Talon, G.; Ferrand, C.; Jacob, D.; Ferry-Dumazet, H.; de Daruvar, A.; et al. Proton NMR quantitative profiling for quality assessment of greenhouse-grown tomato fruit. Metabolomics 2009, 5, 183–198. [Google Scholar] [CrossRef]
- Sobolev, A.P.; Segre, A.L.; Lamanna, R. Proton high-field NMR study of tomato juice. Magn. Reson. Chem. 2003, 41, 237–245. [Google Scholar] [CrossRef]
- Jézéquel, T.; Deborde, C.; Maucourt, M.; Zhendre, V.; Moing, A.; Giraudeau, P. Absolute quantification of metabolites in tomato fruit extracts by fast 2D NMR. Metabolomics 2015, 11, 1231–1242. [Google Scholar] [CrossRef]
- Tiziani, S.; Schwartz, S.J.; Vodovotz, Y. Profiling of carotenoids in tomato juice by one- and two-dimensional NMR. J. Agric. Food Chem. 2006, 54, 6094–6100. [Google Scholar] [CrossRef]
- Masetti, O.; Ciampa, A.; Nisini, L.; Valentini, M.; Sequi, P.; Dell’Abate, M.T. Cherry tomatoes metabolomic profile determinated by 1H-High Resolution-NMR spectroscopy as influenced by growing season. Food Chem. 2014, 162, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Mattoo, A.K.; Sobolev, A.P.; Neelam, A.; Goyal, R.K.; Handa, A.K.; Segre, A.L. Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen-carbon interactions. Plant Physiol. 2006, 142, 1759–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sańchez Perez, E.M.; Iglesias, M.J.; López Ortiz, F.; Sańchez Perez, I.; Maŕtinez Galera, M. Study of the suitability of HRMAS NMR for metabolic profiling of tomatoes: Application to tissue differentiation and fruit ripening. Food Chem. 2010, 122, 877–887. [Google Scholar] [CrossRef]
- Mounet, F.; Lemaire-Chamley, M.; Maucourt, M.; Carbasson, C.; Giraudel, J.L.; Deborde, C.; Lessire, R.; Gallusci, P.; Betrand, W.; Gaudilleŕe, M.; et al. Quantitative metabolic profiles of tomato flesh and seeds during fruit development: Contemporary analysis with ANN and PCA. Metabolomics 2007, 3, 273–288. [Google Scholar] [CrossRef]
- Sobolev, A.P.; Circi, S.; Capitani, D.; Ingallina, C.; Mannina, L. Molecular fingerprint in food authenticity. Curr. Opin. Food Sci. 2017, 16, 59–66. [Google Scholar] [CrossRef]
- Circi, S.; Capitani, D.; Randazzo, A.; Ingallina, C.; Mannina, L.; Sobolev, A.P. Panel test and chemical analyses of commercial olive oils: A comparative study. Chem. Biol. Technol. Agric. 2017, 4, 1–10. [Google Scholar] [CrossRef]
- Hohmann, M.; Christoph, N.; Wachter, H.; Holzgrabe, U. 1H-NMR Profiling as an approach to differentiate conventionally and organically grown tomatoes. J. Agric. Food Chem. 2014, 62, 8530–8540. [Google Scholar] [CrossRef]
- Sobolev, A.P.; Neelam, A.; Fatima, T.; Shukla, V.; Handa, A.K.; Mattoo, A.K. Genetic introgression of ethylene-suppressed transgenic tomatoes with higher-polyamines trait overcomes many unintended effets due to reduced ethylene on the primary metabolome. Front. Plant Sci. 2014, 5, 632. [Google Scholar] [CrossRef] [Green Version]
- Neelam, A.; Cassol, T.; Mehta, R.A.; Abdul-Baki, A.A.; Sobolev, A.P.; Goyal, R.K.; Abbott, J.; Segre, A.L.; Handa, A.K.; Mattoo, A.K. A field-grown transgenic tomato line expressing higher levels of polyamines reveals legume cover crop mulch-specific perturbations in fruit phenotype at the levels of metabolite profiles, gene expression, and agronomic characteristics. J. Exp. Bot. 2008, 59, 2337–2346. [Google Scholar] [CrossRef] [Green Version]
- Capitani, D.; Sobolev, A.P.; Delfini, M.; Vista, S.; Antiochia, R.; Proietti, N.; Bubici, S.; Ferrante, G.; Carradori, S.; De Salvador, F.R.; et al. NMR methodologies in the analysis of blueberries. Electrophoresis 2014, 35, 1615–1626. [Google Scholar] [CrossRef]
- Sobolev, A.P.; Mannina, L.; Capitani, D.; Sanzò, G.; Ingallina, C.; Botta, B.; Fornarini, S.; Crestoni, M.E.; Chiavarino, B.; Carradori, S.; et al. A multi-methodological approach in the study of Italian PDO “Cornetto di Pontecorvo” red sweet pepper. Food Chem. 2018, 255, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Romersurg, H.C. Cluster Analysis for Researchers; Lulu Press: Morrisville, NC, USA, 2004. [Google Scholar]
- Agius, C.; von Tucher, S.; Poppenberger, B.; Rozhon, W. Quantification of glutamate and aspartate by ultra-high-performance liquid chromatography. Molecules 2018, 23, 1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boggio, S.B.; Palatnik, J.F.; Heldt, H.W.; Valle, E.M. Changes in amino acid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum Mill. Plant Sci. 2000, 159, 125–133. [Google Scholar] [CrossRef]
- Sorrequieta, A.; Ferraro, G.; Boggio, S.B.; Valle, E.M. Free amino acid production during tomato fruit ripening a focus on L-glutamate. Amino Acids 2010, 38, 1523–1532. [Google Scholar] [CrossRef]
- Schauer, N.; Zamir, D.; Fernie, A.R. Metabolic profiling of leaves and fruit of wild species tomato: A survey of the Solanum lycopersicum complex. J. Exp. Bot. 2005, 56, 297–307. [Google Scholar] [CrossRef]
- Mallamace, D.; Corsaro, C.; Salvo, A.; Cicero, N.; Macaluso, A.; Giangrosso, G.; Ferrantelli, V.; Dugo, G. A multivariate statistical analysis coming from the NMR metabolic profile of cherry tomatoes (The Sicilian Pachino case). Phys. A 2014, 401, 112–117. [Google Scholar] [CrossRef]
- Bartkiene, E.; Vidmantiene, D.; Juodeikiene, G.; Viskelis, P.; Urbonaviciene, D. Lactic acid fermentation of tomato: Effects on cis/trans lycopene isomer ratio, beta-carotene mass fraction and formation of L(+)- and D(-)-lactic acid. Food Technol. Biotechnol. 2013, 51, 471–478. [Google Scholar]
- Wu, J.-j.; Du, R.-p.; Gao, M.; Sui, Y.-q.; Xiu, L.; Wang, X. Naturally occurring lactic acid bacteria isolated from tomato pomace silage. Asian Australas J. Anim. Sci. 2014, 27, 648–657. [Google Scholar] [CrossRef] [Green Version]
- Sobolev, A.P.; Brosio, E.; Gianferri, R.; Segre, A.L. Metabolic profile of lettuce leaves by high-field NMR spectra. Magn. Reson. Chem. 2005, 43, 625–638. [Google Scholar] [CrossRef] [Green Version]
ppm | Compounds | ppm | Compounds |
---|---|---|---|
0.96 | Leu | 3.21 | Choline |
0.99 | Val | 3.25 | β-Glucose |
1.01 | Ile | 4.04 | Fructose |
1.33 | Lactic acid | 4.31 | Malic Acid |
1.34 | Thr | 4.59 | β-Galactose |
1.49 | Ala | 5.25 | α-Glucose |
2.30 | GABA | 6.91 | Tyr |
2.35 | Glu | 7.34 | Phe |
2.46 | Gln | 7.74 | Trp |
2.55 | Citric Acid | 8.46 | Formic Acid |
2.81 | Asp | 9.13 | Trigonelline |
2.90 | Asn |
ppm | Group | Compounds | |
---|---|---|---|
Iβ-SIT | 0.66 | CH3 | β-Sitosterol |
ISTIG | 0.68 | CH3 | Stigmasterol |
IFA | 2.30 | α-CH2 | Total fatty acids |
IDI | 2.73 | CH2 | Di-unsaturated fatty acids |
ITRI | 2.77 | CH2 | Tri-unsaturated fatty acids |
IUNS | 5.31 | CH=CH | Total unsaturated fatty acids |
Compound | Assignment a | 1H (ppm) | Multiplicity: J [Hz] | 13C (ppm) |
---|---|---|---|---|
Oleic fatty chain | COO | 174.4 | ||
(C18:1 Δ9) | CH2-2 | 2.30 | 34.6 | |
CH2-3 | 1.58 | m | 25.3 | |
CH2-4,7 | 1.30 | m | 29.5 | |
CH2-8 | 2.01 | m | 27.6 | |
CH=CH 9,10 | 5.31 | m | 130.4 | |
CH2-11 | 2.01 | m | 27.6 | |
CH2-12,15 | 1.33-1.30 | m | 29.4–30.2 | |
CH2-16 | 1.28 | m | 31.9 | |
CH2-17 | 1.26 | m | 22.9 | |
CH3-18 | 0.84 | t | 14.3 | |
Di-unsaturated fatty acids (DUFA) Linoleic fatty chain | COO | 174.4 | ||
(C18:2 Δ9,12) | CH2-2 | 2.30 | 34.6 | |
CH2-3 | 1.58 | m | 25.3 | |
CH2-4,7 | 1.32-1.28 | m | 29.5 | |
CH2-8 | 2.02 | m | 27.6 | |
CH-9 | 5.33 | m | 130.4 | |
CH-10 | 5.30 | m | 128.6 | |
CH2-11 | 2.73 | t [6.8] | 26.0 | |
CH-12 | 5.30 | m | 128.6 | |
CH-13 | 5.33 | m | 130.4 | |
CH2-14 | 2.02 | m | 27.6 | |
CH2-15 | 1.27 | m | 29.4 | |
CH2-16 | 1.27 | m | 31.6 | |
CH2-17 | 1.23 | m | 22.9 | |
CH3-18 | 0.85 | t | 14.3 | |
Tri-unsaturated fatty acids (TUFA) Linolenic fatty chain | COO | 174.4 | ||
(C18:3 Δ9,12,15) | CH2-2 | 2.30 | 34.6 | |
CH2-3 | 1.58 | m | 25.3 | |
CH2-4,7 | 1.30 | m | 29.5 | |
CH2-8 | 2.03 | m | 27.6 | |
CH-9 | 5.33 | m | 130.4 | |
CH-10 | 5.30 | m | 128.6 | |
CH2 11 | 2.77 | t [6.2] | 26.0 | |
CH=CH 12,13 | 5.30 | m | 128.6 | |
CH2-14 | 2.77 | t [6.2] | 26.0 | |
CH-15 | 5.27 | m | 127.4 | |
CH-16 | 5.35 | m | 132.2 | |
CH2-17 | 2.04 | m | 20.9 | |
CH3-18 | 0.94 | t [7.6] | 14.4 | |
Diacylglycerol moiety | CH2- sn 1 | 4.34;4.16 | 62.6 | |
CH- sn 2 | 5.20 | m | 70.2 | |
CH2- sn 3 | 4.07 | 64.7 | ||
Saturated fatty acids (SFA) | COO | 174.4 | ||
CH2-2 | 2.28 | 34.6 | ||
CH2-3 | 1.58 | m | 25.3 | |
CH2 | 1.28-1.22 | m | 29.6–32.0 | |
CH2 n-1 | 1.26 | 22.9 | ||
CH3 n | 0.84 | t | 14.2 | |
β-Sitosterol | CH3-18 | 0.66 | s | 12.2 |
Stigmasterol | CH3-18 | 0.68 | s | 12.2 |
CH=CH-22,23 | 5.12; 4.99 | |||
CH(OH)-3 | 3.50 | 71.7 | ||
Squalene | CH3-a | 1.56 | 16.2 | |
CH3-b | 1.64 | 25.8 | ||
CH-c | 5.07 | m | 124.7 | |
CH2-d | 2.03 | 27.4 | ||
CH2-e | 1.94 | 40.1 | ||
Phosphatidylcholine | N(CH3)3 | 3.21 | s | 54.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ingallina, C.; Sobolev, A.P.; Circi, S.; Spano, M.; Giusti, A.M.; Mannina, L. New Hybrid Tomato Cultivars: An NMR-Based Chemical Characterization. Appl. Sci. 2020, 10, 1887. https://doi.org/10.3390/app10051887
Ingallina C, Sobolev AP, Circi S, Spano M, Giusti AM, Mannina L. New Hybrid Tomato Cultivars: An NMR-Based Chemical Characterization. Applied Sciences. 2020; 10(5):1887. https://doi.org/10.3390/app10051887
Chicago/Turabian StyleIngallina, Cinzia, Anatoly P. Sobolev, Simone Circi, Mattia Spano, Anna Maria Giusti, and Luisa Mannina. 2020. "New Hybrid Tomato Cultivars: An NMR-Based Chemical Characterization" Applied Sciences 10, no. 5: 1887. https://doi.org/10.3390/app10051887
APA StyleIngallina, C., Sobolev, A. P., Circi, S., Spano, M., Giusti, A. M., & Mannina, L. (2020). New Hybrid Tomato Cultivars: An NMR-Based Chemical Characterization. Applied Sciences, 10(5), 1887. https://doi.org/10.3390/app10051887