Examining and Adapting the Psychometric Properties of the Maslach Burnout Inventory-Health Services Survey (MBI-HSS) among Healthcare Professionals
Abstract
:1. Introduction
2. Materials and Methods
3. Participants
4. Instrument
5. Procedure
6. Analysis of the Data
7. Results
7.1. Item Analysis
7.2. Assessment of Maslach Burnout Inventory-Human Services Survey (MBI-HSS) Constructs
7.3. Level of Burnout
8. Discussion
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koutsimani, P.; Anthony, M.; Georganta, K. The relationship between burnout, depression and anxiety: A systematic review and meta-analysis. Front. Psychol. 2019, 10, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslach, C.; Jackson, S.; Leiter, M. Maslach Burnout Inventory-Health Services Survey Manual, 4th ed.; Mind Garden Inc., Vendor Federal: Menlo Park, CA, USA, 2018. [Google Scholar]
- Galanakis, M.; Moraitou, M.; Garivaldis, F.J.; Stalikas, A. Factorial structure and psychometric properties of the Maslach Burnout Inventory-Health Services Survey (MBI) in Greek midwives. Eur. J. Psychol. 2009, 5, 52–70. [Google Scholar] [CrossRef]
- Loera, B.; Converso, D.; Viotti, S. Evaluating the psychometric properties of the Maslach Burnout Inventory-Health Services Survey -Human Services Survey (MBI-HSS) among Italian nurses: How many factors must a researcher consider? PLoS ONE 2014, 9, e114987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamdan, A.B.; Alshammary, S.; Javison, S.; Tamani, J.; AlHarbi, M. Burnout among Healthcare Providers in a Comprehensive Cancer Center in Saudi Arabia. Cureus 2019, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squires, A.; Finlayson, C.; Gerchow, L.; Cimiotti, J.P.; Matthews, A.; Schwendimann, R.; Moreno-Casbas, M.T. Methodological considerations when translating “burnout”. Burn. Res. 2014, 1, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Nori, P.; Bartash, R.; Cowman, K.; Dackis, M.; Pirofski, L.A. Is Burnout Infectious? Understanding Drivers of Burnout and Job Satisfaction among Academic Infectious Diseases Physicians. In Open Forum Infectious Diseases; Oxford University Press: New York, NY, USA, 2019; Volume 6. [Google Scholar]
- Mészáros, V.; Ádám, S.; Szabó, M.; Szigeti, R.; Urbán, R. The Bifactor Model of the Maslach Burnout Inventory-Health Services Survey –Human Services Survey (MBI-HSS)—An Alternative Measurement Model of Burnout. Stress Health 2014, 30, 82–88. [Google Scholar]
- Matejić, B.; Milenović, M.; Kisić Tepavčević, D.; Simić, D.; Pekmezović, T.; Worley, J.A. Psychometric properties of the serbian version of the Maslach Burnout Inventory-Health Services Survey -human services survey: A validation study among anesthesiologists from Belgrade Teaching Hospitals. Sci. World J. 2015. [Google Scholar] [CrossRef]
- Mazhar, S.B.; Gilani, S.; Khan, S. High burn out among doctors working in a tertiary care hospital; a wakeup call. JPMA J. Pak. Med Assoc. 2019, 69, 349–354. [Google Scholar]
- Shaikh, A.A.; Shaikh, A.; Kumar, R.; Tahir, A. Assessment of Burnout and its Factors Among Doctors Using the Abbreviated Maslach Burnout Inventory-Health Services Survey. Cureus 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Pisanti, R.; Lombardo, C.; Lucidi, F.; Violani, C.; Lazzari, D. Psychometric properties of the Maslach Burnout Inventory-Health Services Survey for Human Services among Italian nurses: A test of alternative models. J. Adv. Nurs. 2013, 69, 697–707. [Google Scholar] [CrossRef]
- Vanheule, S.; Rosseel, Y.; Vlerick, P. The factorial validity and measurement invariance of the Maslach Burnout Inventory-Health Services Survey for human services. Stress Health J. Int. Soc. Investig. Stress 2007, 23, 87–91. [Google Scholar] [CrossRef]
- Oh, S.H.; Lee, M. Examining the psychometric properties of the Maslach Burnout Inventory-Health Services Survey with a sample of child protective service workers in Korea. Child. Youth Serv. Rev. 2009, 31, 206–210. [Google Scholar] [CrossRef]
- Kanste, O.; Miettunen, J.; Kyngäs, H. Factor structure of the Maslach Burnout Inventory-Health Services Survey among Finnish nursing staff. Nurs. Health Sci. 2006, 8, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Iwanicki, E.F.; Schwab, R.L. A cross validation study of the Maslach Burnout Inventory-Health Services Survey. Educ. Psychol. Meas. 1981, 41, 1167–1174. [Google Scholar] [CrossRef]
- Densten, I.L. Re-thinking burnout. J. Organ. Behav. Int. J. Ind. Occup. Organ. Psychol. Behav. 2001, 22, 833–847. [Google Scholar] [CrossRef]
- Trigo, T.R.; de Freitas, C.C.; Wang, Y.P.; Ribeiro, F.G.; de Lucia, M.C.S.; Siqueira, J.O.; Fraguas, R. The Influence of Depression on the Psychometric Properties of the Maslach Burnout Inventory-Health Services Survey –Human Services Survey: A Cross-Sectional Study with Nursing Assistants. Front. Psychiatry 2018, 9, 695. [Google Scholar] [CrossRef]
- Gil-Monte, P.R. Factorial validity of the Maslach Burnout Inventory-Health Services Survey (MBI-HSS) among Spanish professionals. Rev. Saúde Pública 2005, 39, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Al-Omari, A.; Al Mutair, A.; Shamsan, A.; Al Mutairi, A. A Predicting Burnout Factors among Healthcare Providers at Private Hospitals in Saudi Arabia and United Arab Emirates: A Cross-Sectional Study. Appl. Sci. 2020, 10, 157. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: Pearson New International Edition; Pearson Higher Education: Harlow, UK, 2013. [Google Scholar]
- Sim, S.M.; Rasiah, R.I. Relationship between item difficulty and discrimination indices in true/false-type multiple choice questions of a para-clinical multidisciplinary paper. Ann. Acad. Med. Singap. 2006, 35, 67. [Google Scholar]
- Wu, M.L.; Tu, J.T. SPSS and Statistical Application Analysis; Wu-Nan: Taipei, Taiwan, 2006. [Google Scholar]
- George, D. SPSS for Windows Step by Step: A Simple Study Guide and Reference; Pearson Education India: Delhi, India, 2011. [Google Scholar]
- Gorsuch, R.L. Factor Analysis; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1983. [Google Scholar]
- Kline, P. An Easy Guide to Factor Analysis; Routledge: London, UK, 2014. [Google Scholar]
- Cattell, R. (Ed.) The Scientific Use of Factor Analysis in Behavioral and Life Sciences; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Everitt, B.S. Multivariate analysis: The need for data, and other problems. Br. J. Psychiatry 1975, 126, 237–240. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory, 2nd ed.; Mcgraw-Hill: Hillsdale, NJ, USA, 1978. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford publications: New York, NY, USA, 2015. [Google Scholar]
- Weston, R.; Gore, P.A., Jr. A brief guide to structural equation modeling. Couns. Psychol. 2006, 34, 719–751. [Google Scholar] [CrossRef]
- Arbuckle, J. Amos 5.0 Update to the Amos User’s Guide; Marketing Department, SPSS Incorporated, Amos Development Corporation: Chicago, IL, USA, 2003. [Google Scholar]
- Richardsen, A.M.; Martinussen, M. The Maslach Burnout Inventory: Factorial validity and consistency across occupational groups in Norway. J. Occup. Organ. Psychol. 2004, 77, 377–384. [Google Scholar] [CrossRef]
- Lee, H.F.; Chien, T.W.; Yen, M. Examining factor structure of Maslach burnout inventory among nurses in Taiwan. J. Nurs. Manag. 2013, 21, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Poghosyan, L.; Aiken, L.H.; Sloane, D.M. Factor structure of the Maslach burnout inventory: An analysis of data from large scale cross-sectional surveys of nurses from eight countries. Int. J. Nurs. Stud. 2009, 46, 894–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.S.K. Assessment of burnout for Chinese human service professionals: A study of factorial validity and invariance. J. Clin. Psychol. 1998, 54, 55–58. [Google Scholar] [CrossRef]
- Li, F. An Introduction to Amos and Its Uses in Scale Development: Graphics and Basic; Psychological Publishing Co., Ltd.: Taipei, Taiwan, 2007. [Google Scholar]
Total | CFA | EFA | ||||||
---|---|---|---|---|---|---|---|---|
Demographic | N | % | N | % | N | % | X2 | p Value * |
Gender | ||||||||
Male | 231 | 26.2% | 153 | 26.2% | 78 | 26.2% | <0.001 | 0.99 |
Female | 651 | 73.8% | 431 | 73.8% | 220 | 73.8% | ||
Profession | ||||||||
Physician | 115 | 13.1% | 80 | 13.7% | 35 | 11.8% | 5.38 | 0.14 |
Nurse | 612 | 69.6% | 392 | 67.2% | 220 | 74.3% | ||
Respiratory Therapist | 18 | 2.0% | 12 | 2.1% | 6 | 2.0% | ||
Others | 134 | 15.2% | 99 | 17.0% | 35 | 11.8% | ||
Nationality | ||||||||
Saudi | 84 | 9.9% | 55 | 9.7% | 29 | 10.3% | 0.08 | 0.78 |
Non-Saudi | 766 | 90.1% | 513 | 90.3% | 253 | 89.7% | ||
Experience | ||||||||
1 to 5 years | 405 | 46.6% | 264 | 45.9% | 141 | 47.8% | 0.70 | 0.70 |
6 to 10 years | 338 | 38.9% | 229 | 39.8% | 109 | 36.9% | ||
>10 years | 127 | 14.6% | 82 | 14.3% | 45 | 15.3% | ||
Marital Status | ||||||||
Single | 476 | 54.8% | 306 | 53.5% | 170 | 57.4% | 1.30 | 0.52 |
Married | 378 | 43.5% | 256 | 44.8% | 122 | 41.2% | ||
Divorced | 14 | 1.6% | 10 | 1.7% | 4 | 1.4% |
Item-Subscale Correlation | Sub-Scales α If Item Deleted | Item-Total Correlation | α If Item Deleted | Critical Ratio * | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|
EE (0.88) | |||||||
MBI 1 | 0.67 | 0.86 | 0.55 | 0.87 | 56.19 | −0.82 | −0.23 |
MBI 2 | 0.66 | 0.86 | 0.54 | 0.87 | 47.97 | −1.06 | 0.41 |
MBI 3 | 0.61 | 0.87 | 0.52 | 0.87 | 61.69 | −0.75 | −0.50 |
MBI 6 | 0.61 | 0.87 | 0.58 | 0.86 | 80.39 | −0.27 | −1.05 |
MBI 8 | 0.77 | 0.85 | 0.66 | 0.86 | 55.33 | −0.98 | 0.00 |
MBI 13 | 0.71 | 0.86 | 0.60 | 0.86 | 67.19 | −0.54 | −0.76 |
MBI 14 | 0.60 | 0.87 | 0.54 | 0.87 | 57.09 | −0.82 | −0.19 |
MBI 16 | 0.43 | 0.88 | 0.56 | 0.87 | 97.52 | 0.26 | −1.15 |
MBI 20 | 0.61 | 0.87 | 0.60 | 0.86 | 101.41 | −0.25 | −1.17 |
PA (0.79) | |||||||
MBI 4 | 0.48 | 0.77 | 0.26 | 0.87 | 52.80 | −0.92 | 0.32 |
MBI 7 | 0.58 | 0.75 | 0.34 | 0.87 | 51.69 | −0.98 | 0.53 |
MBI 9 | 0.57 | 0.75 | 0.32 | 0.87 | 53.59 | −0.85 | 0.39 |
MBI 12 | 0.39 | 0.78 | 0.11 | 0.88 | 54.78 | −0.20 | −0.38 |
MBI 17 | 0.50 | 0.76 | 0.28 | 0.87 | 53.96 | −0.41 | −0.47 |
MBI 18 | 0.38 | 0.78 | 0.46 | 0.87 | 55.11 | −0.38 | −0.51 |
MBI 19 | 0.50 | 0.76 | 0.26 | 0.87 | 56.31 | −0.68 | −0.03 |
MBI 21 | 0.57 | 0.75 | 0.33 | 0.87 | 52.13 | −0.60 | −0.19 |
DP (0.74) | |||||||
MBI 5 | 0.54 | 0.69 | 0.45 | 0.87 | 98.71 | 0.48 | −1.24 |
MBI 10 | 0.65 | 0.65 | 0.58 | 0.86 | 93.01 | −0.02 | −1.12 |
MBI 11 | 0.44 | 0.72 | 0.62 | 0.86 | 60.68 | −0.54 | −0.66 |
MBI 15 | 0.45 | 0.72 | 0.33 | 0.87 | 46.15 | 1.30 | 0.38 |
MBI 22 | 0.47 | 0.71 | 0.51 | 0.87 | 121.28 | −0.03 | −1.28 |
New Factor | |||
---|---|---|---|
Item (Origin Factor) | EE | PA | DP |
MBI 1 (EE) | 0.85 | ||
MBI 2 (EE) | 0.88 | ||
MBI 3 (EE) | 0.72 | ||
MBI 4 (PA) | 0.62 | ||
MBI 5 (DP) | 0.73 | ||
MBI 6 (EE) | 0.56 | ||
MBI 7 (PA) | 0.75 | ||
MBI 8 (EE) | 0.83 | ||
MBI 9 (PA) | 0.70 | ||
MBI 10 (DP) | 0.65 | ||
MBI 11 (DP) | 0.70 | ||
MBI 12 (PA) | 0.56 | ||
MBI 13 (EE) | 0.73 | ||
MBI 14 (EE) | 0.72 | ||
MBI 15 (DP) | 0.79 | ||
MBI 16 (EE) | 0.69 | ||
MBI 17 (PA) | 0.57 | ||
MBI 18 (PA) | |||
MBI 19 (PA) | 0.66 | ||
MBI 20 (EE) | 0.49 | 0.46 | |
MBI 21 (PA) | 0.71 | ||
MBI 22 (DP) | 0.55 | ||
Variance explained % | 33.47 | 14.11 | 8.71 |
Eigen value | 7.36 | 3.10 | 1.91 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Mutair, A.; Al Mutairi, A.; Chagla, H.; Alawam, K.; Alsalman, K.; Ali, A. Examining and Adapting the Psychometric Properties of the Maslach Burnout Inventory-Health Services Survey (MBI-HSS) among Healthcare Professionals. Appl. Sci. 2020, 10, 1890. https://doi.org/10.3390/app10051890
Al Mutair A, Al Mutairi A, Chagla H, Alawam K, Alsalman K, Ali A. Examining and Adapting the Psychometric Properties of the Maslach Burnout Inventory-Health Services Survey (MBI-HSS) among Healthcare Professionals. Applied Sciences. 2020; 10(5):1890. https://doi.org/10.3390/app10051890
Chicago/Turabian StyleAl Mutair, Abbas, Alya Al Mutairi, Hiba Chagla, Khalid Alawam, Khulud Alsalman, and Azeem Ali. 2020. "Examining and Adapting the Psychometric Properties of the Maslach Burnout Inventory-Health Services Survey (MBI-HSS) among Healthcare Professionals" Applied Sciences 10, no. 5: 1890. https://doi.org/10.3390/app10051890
APA StyleAl Mutair, A., Al Mutairi, A., Chagla, H., Alawam, K., Alsalman, K., & Ali, A. (2020). Examining and Adapting the Psychometric Properties of the Maslach Burnout Inventory-Health Services Survey (MBI-HSS) among Healthcare Professionals. Applied Sciences, 10(5), 1890. https://doi.org/10.3390/app10051890