A Model of Solid Oxide Fuel Cell Degradation on a Microstructural Level
Abstract
:1. Introduction
2. Methods and Modeling
2.1. Conservation of Species
2.2. Conservation of Mass
2.3. Conservation of Charge
2.3.1. Surface Exchange
2.3.2. Bulk Diffusion
2.3.3. Charge Transfer
2.3.4. Electronic Current
2.3.5. Ionic Current
2.4. Boundary Conditions
2.5. Modeled Structure
2.6. Solid-Electrolyte-Gas Interfaces
- if (GSV < Threshold 1) then Gas (w, z) = 1;
- else if ((GSV ≥ Threshold 1) and (GSV < Threshold 2)) then Electrolyte (w, z) = 1;
- else Solid (w, z) = 1;
2.7. The Degradation Model
2.8. Model Parameters
3. Results and Discussion
3.1. AC Analysis
3.2. DC Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
1-,2-,3-D | One-,two-,three-dimensional |
AC | Alternate current |
BC | Boundary condition |
BSE | Backscattered electron |
CT | Computed tomography |
DC | Direct current |
e | Electron |
FDM | Finite difference method |
FIB | Focused ion beam |
GSV | Grey scale value |
LSCFLSM | Lanthanum Strontium Cobalt FerriteLanthanum Strontium Manganite |
MIEC | Mixed ionic-electronic conductor |
NiNi-SSZ | NickelNickel-scandia stabilized zirconia |
O2− | Oxygen ion |
OCV | Open circuit voltage |
S | Sulfur |
SEM | Scanning electronic microscopy |
SOFC | Solid oxide fuel cell |
TPB | Triple-phase boundary |
X-ray | High-energy electromagnetic radiation |
YSZ | Yttria-stabilized zirconia |
Appendix A
Gas Species | |
CH4 | Methane |
CO2 | Carbon dioxide |
CO | Carbon monoxide |
H2 | Hydrogen |
H2O | Water |
N2 | Nitrogen |
O2 | Oxygen |
Symbols | |
Forward anode exponential coefficient | |
Backward anode exponential coefficient | |
Forward cathode exponential coefficient | |
Backward cathode exponential coefficient | |
δ | Delta function |
i, j | Indexes of gas species |
κ | Exponential coefficient |
κa | Anode exponential coefficient |
κc | Cathode exponential coefficient |
Normal unit vector | |
Quantity | |
Cdl,a | Double layer capacitance of anode |
CO2− [mol m−3] | Concentration of oxygen ions |
d [m] | Diameter of nickel grains |
Dchem [m2 s−1] | Chemical diffusion coefficient |
Di,j [m2 s−1] | Diffusion coefficient of gas species |
E [J m−2] | Energy density |
ΔGH2 [J mol−1] | Gibbs free energy for hydrogen |
f [Hz] | Frequency |
F [A s mol−1] | Faraday constant |
Φ [mol m−2 s−1] | Molar flux density |
η [/] | Conversion efficiency |
ΔH [J mol−1] | Standard enthalpy of formation |
ia/c [A m−2] | Anode/cathode current density |
i0,a/c [A m−2] | Anode/cathode exchange current density |
j [kg m−2] | Diffusive mass flux |
J [A m−2] | Current density |
Jcell [A m−2] | Output current density of SOFC |
ka/c [m3 s−1] | Anode/cathode growth coefficient |
ksurf [m s−1] | Surface exchange coefficient |
kth [V K−1] | Temperature coefficient |
μ [/] | Porosity |
M [kg mol−1] | Molar mass |
p [kg m−1 s−1] | Pressure |
P [W m−2] | Power density |
ρ [kg m−3] | Density of gas |
R [J mol−1 K−1] | Ideal gas constant |
Rs [Ω cm2] | Series resistance |
δ [S m−1] | Electronic or ionic conductivity |
S [kg s−1] | Source or sink term |
t [s] | Time |
T [K] | Temperature |
v [m s−1] | Velocity |
Vcell [V] | Output voltage of SOFC |
Vel [V] | Electrolyte phase potential |
Vs [V] | Solid phase potential |
Vi [m3] | Diffusion volume of i-th gas specie |
xi [/] | Molar fraction of the i-th gas specie |
yi [/] | Mass fraction of the i-th gas specie |
η [/] | Conversion efficiency |
References
- Ali Saadabadi, S.; Thallam Thattai, A.; Fan, L.; Lindeboom, R.E.F.; Spanjers, H.; Aravind, P.V. Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints. Renew. Energy 2019, 134, 194–214. [Google Scholar] [CrossRef]
- Huang, K.; Goodenough, J.B. Direct current (DC) electrical efficiency and power of a solid oxide fuel cell (SOFC). In Solid Oxide Fuel Cell Technology: Principles, Performance and Operations; Woodhead Publishing Limited, Abington Hall, Granta Park, Great Abington: Cambridge, UK, 2009; pp. 141–148. [Google Scholar]
- Chatrattanawet, N.; Saebea, D.; Authayanun, S.; Arpornwichanop, A.; Patcharavorachot, Y. Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approaches. Energy 2018, 146, 131–140. [Google Scholar] [CrossRef]
- Kupecki, J.; Papurello, D.; Lanzini, A.; Naumovich, Y.; Motylinski, K.; Blesznowski, M.; Santarelli, M. Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC). Appl. Energy 2018, 230, 1573–1584. [Google Scholar] [CrossRef]
- Moçoteguy, P.; Brisse, A. A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells. Int. J. Hydrog. Energy 2013, 38, 15887–15902. [Google Scholar] [CrossRef]
- Papurello, D.; Lanzini, A.; Fiorilli, S.; Smeacetto, F.; Singh, R.; Santarelli, M. Sulfur poisoning in Ni-anode solid oxide fuel cells (SOFCs): Deactivation in single cells and a stack. Chem. Eng. J. 2016, 283, 1224–1233. [Google Scholar] [CrossRef] [Green Version]
- Lanzini, A.; Leone, P.; Guerra, C.; Smeacetto, F.; Brandon, N.P.; Santarelli, M. Durability of anode supported Solid Oxides Fuel Cells (SOFC) under direct dry-reforming of methane. Chem. Eng. J. 2013, 220, 254–263. [Google Scholar] [CrossRef]
- Yu, R.; Guan, W.; Wang, F.; Han, F. Quantitative assessment of anode contribution to cell degradation under various polarization conditions using industrial size planar solid oxide fuel cells. Int. J. Hydrog. Energy 2018, 43, 2429–2435. [Google Scholar] [CrossRef]
- Hubert, M.; Laurencin, J.; Cloetens, P.; Morel, B.; Montinaro, D.; Lefebvre-Joud, F. Impact of Nickel agglomeration on Solid Oxide Cell operated in fuel cell and electrolysis modes. J. Power Sources 2018, 397, 240–251. [Google Scholar] [CrossRef]
- Khan, M.Z.; Mehran, M.T.; Song, R.H.; Lee, J.W.; Lee, S.B.; Lim, T.H. A simplified approach to predict performance degradation of a solid oxide fuel cell anode. J. Power Sources 2018, 391, 94–105. [Google Scholar] [CrossRef]
- Lei, Y.; Cheng, T.L.; Wen, Y.H. Phase field modeling of microstructure evolution and concomitant effective conductivity change in solid oxide fuel cell electrodes. J. Power Sources 2017, 345, 275–289. [Google Scholar] [CrossRef] [Green Version]
- Cuneo, A.; Zaccaria, V.; Tucker, D.; Traverso, A. Probabilistic analysis of a fuel cell degradation model for solid oxide fuel cell and gas turbine hybrid systems. Energy 2017, 141, 2277–2287. [Google Scholar] [CrossRef]
- Zhu, J.; Lin, Z. Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions. Appl. Energy 2018, 231, 22–28. [Google Scholar] [CrossRef]
- Fuller, E.N.; Schettler, P.D.; Giddings, J.C. A new method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem. 1966, 58, 19–27. [Google Scholar] [CrossRef]
- Nerat, M.; Juričić, Ð. A comprehensive 3-D modeling of a single planar solid oxide fuel cell. Int. J. Hydrog. Energy 2016, 41, 3613–3627. [Google Scholar] [CrossRef]
- Søgaard, M.; Vang Hendriksen, P.; Jacobsen, T.; Mogensen, M. Modelling of the Polarization Resistance from Surface Exchange and Diffusion Coefficient Data. In Proceedings of the 7th European SOFC Forum, Lucerne, Switzerland, 3–7 July 2006. [Google Scholar]
- Joos, J. Microstructural Characterisation, Modelling and Simulation of Solid Oxide Fuel Cell Cathodes. In Dissertation, Karlsruher Institut für Technologie, KIT-Fakultät für Elektrotechnik und Informationstechnik; D-KIT Scientific Publishing: Karlsruhe, Germany, 2017. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, P.K.; Saltani, S.; Wong, A.K.C. A survey of thresholding techniques. Comp. Vis. Graph. Image Process. 1988, 41, 233–260. [Google Scholar] [CrossRef]
- Münch, B.; Holzer, L. Contradicting Geometrical Concepts in Pore Size Analysis Attained with Electron Microscopy and Mercury Intrusion. J. Am. Ceram. Soc. 2008, 91, 4059–4067. [Google Scholar] [CrossRef]
- Wilson, J.R.; Kobsiriphat, W.; Mendoza, R.; Chen, H.Y.; Hiller, J.M.; Miller, D.J.; Thornton, K.; Voorhees, P.W.; Adler, S.B.; Barnett, S.A. Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat. Mater. 2006, 5, 541–544. [Google Scholar] [CrossRef]
- Izzo, J.R.; Joshi, A.S.; Grew, K.N.; Chiu, W.K.S.; Tkachuk, A.; Wang, S.H.; Yun, W. Nondestructive Reconstruction and Analysis of SOFC Anodes Using X-ray Computed Tomography at Sub-50 nm Resolution. J. Electrochem. Soc. 2008, 155, B504–B508. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; He, A.; Hara, S.; Shikazono, N. Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: Correlations between microstructures and electrochemical performances. Energy Convers. Manag. 2019, 190, 1–13. [Google Scholar] [CrossRef]
- Liu, Y.L.; Thydén, K.; Chen, M.; Hagen, A. Microstructure degradation of LSM-YSZ cathode in SOFCs operated at various conditions. Solid State Ion. 2012, 206, 97–103. [Google Scholar] [CrossRef]
- Zekri, A.; Knipper, M.; Parisi, J.; Plaggenborg, T. Microstructure degradation of Ni/CGO anodes for solid oxide fuel cells after long operation time using 3D reconstructions by FIB tomography. Phys. Chem. Chem. Phys. 2017, 19, 13767–13777. [Google Scholar] [CrossRef] [PubMed]
- Holzer, L.; Iwanschitz, B.; Hocker, T.; Münch, B.; Prestat, M.; Wiedenmann, D.; Vogt, U.; Holtappels, P.; Sfeir, J.; Mai, A.; et al. Microstructure degradation of cermet anodes for solid oxide fuel cells: Quantification of nickel grain growth in dry and in humid atmospheres. J. Power Sources 2011, 196, 1279–1294. [Google Scholar] [CrossRef]
- Bertei, A.; Nucci, B.; Nicolella, C. Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes. Chem. Eng. Sci. 2013, 101, 175–190. [Google Scholar] [CrossRef]
- Lay-Grindler, E.; Laurencin, J.; Villanova, J.; Cloetens, P.; Bleuet, P.; Mansuy, A.; Mougin, J.; Delette, G. Degradation study by 3D reconstruction of a nickel-yttria stabilized zirconia cathode after high temperature steam electrolysis operation. J. Power Sources 2014, 269, 927–936. [Google Scholar] [CrossRef]
- Brune, A.; Lajavardi, M.; Fisler, D.; Wagner, J.B. The electrical conductivity of yttria-stabilized zirconia prepared by precipitation from inorganic aqueous solutions. Solid State Ion. 1998, 106, 89–101. [Google Scholar] [CrossRef]
- Cronin, J.S.; Wilson, J.R.; Barnett, S.A. Impact of pore microstructure evolution on polarization resistance of Ni-Yttria-stabilized zirconia fuel cell anodes. J. Power Sources 2011, 196, 2640–2643. [Google Scholar] [CrossRef]
Interfaces/Variables | Vs (V) | Vel (V) | yi (/) | v (m s−1) | C (mol m−3) |
---|---|---|---|---|---|
A | / | / | |||
B | / | / | / | ||
C | / | / | |||
D | |||||
E | / | / | / | ||
F | / | / | / | ||
G | / | / | / | ||
H | / | ||||
I | / | / | / | / | |
J | / | / | |||
K | / | / |
Parameter | Symbol | Value | Unit | Reference |
---|---|---|---|---|
Pressure | p | 1.0 | bar | [10] |
Anode thickness | da | 20 | μm | [10] |
Cathode thickness | dc | 20 | μm | [10] |
Electrolyte thickness | de | 10 | μm | [10] |
Anode electronic conductivity | σs,a | 4800 | S m−1 | [15] |
Cathode electronic conductivity | σs,c | 1600 | S m−1 | [15] |
Anode ionic conductivity | σel,a | 2.0 | S m−1 | [29] |
Cathode ionic conductivity | σel,c | 2.0 | S m−1 | [29] |
Electrolyte ionic conductivity | σel,e | 2.0 | S m−1 | [29] |
Anode exchange current density | i0,a | 1200 | A m−2 | [10] |
Cathode exchange current density | i0,c | 2200 | A m−2 | [10] |
Surface exchange coefficient | ksurf | 2.0 × 10−5 | m s−1 | [17] |
Concentration of oxygen ions | CO2- | 8.3 × 104 | mol m−3 | [17] |
Chemical diffusion coefficient | Dchem | 4.4 × 10−10 | m2 s−1 | [17] |
Series resistance of anode support layer | Rs,a | 0.5 | Ω cm2 | [10] |
Double layer capacitance of anode | Cdl,a | 0.5 | F cm−2 | [10] |
Molar fraction of hydrogen in fuel | x0,H2 | 0.970 | / | [10] |
Molar fraction of water in fuel | x0,H2O | 0.030 | / | [10] |
Molar fraction of oxygen in air | x0,O2 | 0.207 | / | [10] |
Molar fraction of nitrogen in air | x0,N2 | 0.793 | / | [10] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nerat, M. A Model of Solid Oxide Fuel Cell Degradation on a Microstructural Level. Appl. Sci. 2020, 10, 1906. https://doi.org/10.3390/app10061906
Nerat M. A Model of Solid Oxide Fuel Cell Degradation on a Microstructural Level. Applied Sciences. 2020; 10(6):1906. https://doi.org/10.3390/app10061906
Chicago/Turabian StyleNerat, Marko. 2020. "A Model of Solid Oxide Fuel Cell Degradation on a Microstructural Level" Applied Sciences 10, no. 6: 1906. https://doi.org/10.3390/app10061906
APA StyleNerat, M. (2020). A Model of Solid Oxide Fuel Cell Degradation on a Microstructural Level. Applied Sciences, 10(6), 1906. https://doi.org/10.3390/app10061906