Development of Quantum Private Queries Protocol on Collective-Dephasing Noise Channel
Abstract
:1. Introduction
2. Background
2.1. Logical Bell State on Collective-Dephasing Noise
2.2. Entanglement Swapping Results of Logical Bell States on Collective-Dephasing Noise
3. Protocol Process
4. Security Analysis
4.1. Database Security Analysis
4.2. User Privacy Security Analysis
4.3. The Eva Attack
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
QPQ | Quantum Private Query |
QKD | Quantum Key Distribution |
SPIR | Symmetric Private Information Retrieval |
JM | Joint-Measurement |
DF | Decoherence-Free |
References
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public-key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 9–12 December 1984; pp. 175–179. [Google Scholar]
- Ma, H.; Teng, J.; Hu, T.; Shi, P.; Wang, S. Co-communication Protocol of Underwater Sensor Networks with Quantum and Acoustic Communication Capabilities. Wireless Pers Commun. Available online: https://doi.org/10.1007/s11277-020-07192-7 (accessed on 6 February 2020). [CrossRef]
- Shi, P.; Li, N.; Wang, S.; Liu, Z.; Ren, M.; Ma, H. Quantum Multi-User Broadcast Protocol for the “Platform as a Service” Model. Sensors 2019, 19, 5257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.-Y.; Xu, P.-A.; Shao, C.-H.; Chen, L.; Li, J.-X.; Pan, Q. Quantum Private Query Based on Stable Error Correcting Code in the Case of Noise. Int. J. Theor. Phys. 2019, 58, 4241–4248. [Google Scholar]
- Teng, J.; Ma, H. Dynamic asymmetric group key agreement protocol with traitor traceability. IET Inf. Secur. 2019, 13, 703–710. [Google Scholar] [CrossRef]
- Hillery, M.; Buzek, V.; Berthiaume, A. Quantum secret sharing. Phys. Rev. A 1999, 59, 1829–1834. [Google Scholar] [CrossRef] [Green Version]
- Long, G.L.; Liu, X.S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 2002, 65, 032302. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Ma, H.; Zheng, C.; Ding, X.; Gao, J.; Long, G. Quantum secure communication scheme based on quantum teleportation. J. Phys. 2017, 66, 37–47. [Google Scholar]
- Wei, C.Y.; Wang, T.Y.; Gao, F. Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 2016, 93, 042318. [Google Scholar] [CrossRef]
- Walton, Z.D.; Abouraddy, A.F.; Sergienko, A.V.; Saleh, B.E.; Teich, M.C. Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 2003, 91, 087901. [Google Scholar] [CrossRef] [Green Version]
- Ye, T. Error tolerance of quantum steganography over collective noise channel. Sci. China Phys. Mech. Astron. 2015, 1, 010301. [Google Scholar] [CrossRef]
- Lin, J.; Hwang, T. Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quant. Inf. Process. 2013, 12, 1089–1107. [Google Scholar] [CrossRef]
- Yang, C.; Guo, Y.N.; Peng, H.P.; Lu, Y.B. Dynamics of local quantum uncertainty for a two-qubit system under dephasing noise. Laser Phys. 2019, 30, 015203. [Google Scholar] [CrossRef]
- Chang, L.W.; Zhang, Y.Q.; Tian, X.X.; Qian, Y.H.; Zheng, S.H. Fault tolerant controlled quantum dialogue against collective noise. Chin. Phys. B 2020, 29, 010304. [Google Scholar] [CrossRef]
- Li, X.H.; Deng, F.G.; Zhou, H.Y. Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 2007, 91, 144101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.J. Robust multiparty quantum secret key sharing over two collective-noise channels. Phys. A 2006, 361, 233–238. [Google Scholar] [CrossRef]
- Gu, B.; Mu, L.; Ding, L.; Zhang, C.; Li, C. Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 2010, 283, 3099–3103. [Google Scholar] [CrossRef]
- Yang, C.W.; Tsai, C.W.; Hwang, T. Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys. Mech. Astron. 2011, 54, 496–501. [Google Scholar] [CrossRef]
- Hsieh, C.R.; Tsai, C.W.; Hwang, T. Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 2010, 54, 1019. [Google Scholar]
- Shi, W.X.; Liu, X.T.; Wang, J.; Tang, C.J. Multi-Bit Quantum private query. Commun. Theor. Phys. 2015, 64, 299–304. [Google Scholar] [CrossRef]
- Yang, Y.G.; Yang, R.; Cao, W.F.; Chen, X.B.; Zhou, Y.H.; Shi, W.M. Flexible quantum oblivious transfer. Int. J. Theor. Phys. 2017, 56, 1286–1297. [Google Scholar] [CrossRef]
- Yang, Y.G.; Sun, S.J.; Wang, Y. Quantum oblivious transfer based on a quantum symmetrically private information retrieval protocol. Int. J. Theor. Phys. 2015, 54, 910–916. [Google Scholar] [CrossRef]
- Jakobi, M.; Simon, C.; Gisin, N.; Bancal, J.D.; Branciard, C.; Walenta, N.; Zbinden, H. Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 2011, 83, 022301. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.G.; Liu, Z.C.; Chen, X.B.; Cao, W.F.; Zhou, Y.H.; Shi, W.M. Novel classical post-processing for quantum key distribution-based quantum private query. Quant. Inf. Process. 2016, 15, 3833–3840. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Popescu, S.; Schumacher, B.; Smolin, J.A.; Wootters, W.K. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 1996, 76, 722–725. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.Y.; Cai, X.Q.; Liu, B.; Wang, T.Y.; Gao, F. A generic construction of quantum-oblivious-key transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 2017, 67, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Qin, S.J.; Huang, W.; Wen, Q.Y. Quantum private query: A new kind of practical quantum cryptographic protocol. Sci. China Phys. Mech. Astron. 2019, 62, 70301. [Google Scholar] [CrossRef]
- Rao, M.V.P.; Jakobi, M. Towards ommunication-efficient quantum oblivious key distribution. Phys. Rev. A 2013, 87, 012331. [Google Scholar]
- Raynal, P. Unambiguous state discrimination of two density matrices in quantum information theory. arXiv 2006, arXiv:0611133. [Google Scholar]
- Herzog, U.; Bergou, J.A. Optimum unambiguous discrimination of two mixed quantum states. Phys. Rev. A 2005, 71, 050301. [Google Scholar] [CrossRef] [Green Version]
Two Logical Bell States | Two Logical Bell States after Entanglement Swapping |
---|---|
00 | |
01 | |
10 | |
11 | |
Quantum States Sent by Bob | Measurement Selected by Alice | Possible Measurement | The States of Bob’s Statement | The Results of Alice’s Measurement |
---|---|---|---|---|
Quantum States Sent by Bob | Measurement Selected by Alice | Possible Measurement | The States of Bob’s Statement | The Results of Alice’s Measurement |
---|---|---|---|---|
? | ||||
? | ||||
? | ||||
? | ||||
? | ||||
? | ||||
? | ||||
? | ||||
? | ||||
? | ||||
? | ||||
? | ||||
? | ||||
? | ||||
? | ||||
? |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zhang, W.; Ma, Y.; Zhang, X.; Ma, H. Development of Quantum Private Queries Protocol on Collective-Dephasing Noise Channel. Appl. Sci. 2020, 10, 1935. https://doi.org/10.3390/app10061935
Zhao J, Zhang W, Ma Y, Zhang X, Ma H. Development of Quantum Private Queries Protocol on Collective-Dephasing Noise Channel. Applied Sciences. 2020; 10(6):1935. https://doi.org/10.3390/app10061935
Chicago/Turabian StyleZhao, Jingbo, Wenbin Zhang, Yulin Ma, Xiaohan Zhang, and Hongyang Ma. 2020. "Development of Quantum Private Queries Protocol on Collective-Dephasing Noise Channel" Applied Sciences 10, no. 6: 1935. https://doi.org/10.3390/app10061935
APA StyleZhao, J., Zhang, W., Ma, Y., Zhang, X., & Ma, H. (2020). Development of Quantum Private Queries Protocol on Collective-Dephasing Noise Channel. Applied Sciences, 10(6), 1935. https://doi.org/10.3390/app10061935