Generation of Monodispersed Spherical Thermosensitive Gels and Their Swelling and Shrinking Behaviors in Aqueous Polymeric Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method for Generating Mono-dispersed Thermosensitive Gels
2.2. Method to Observe Swelling and Shrinking Behavior of the Gels
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Matanovic, M.R.; Kristl, J.; Grabnar, P.A. Thermoresponsive polymers: Insight into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int. J. Pharm. 2014, 472, 262–275. [Google Scholar] [CrossRef]
- Ganorkar, C.R.; Liu, F.; Baudy, M.; Kim, S.W. Modulating insulin-release profile from pH/ thermosensitive polymeric beads through polymer molecular weight. J. Control. Release 1999, 59, 287–298. [Google Scholar] [CrossRef]
- Hoffman, A.S. Intelligent polymers in medicine and bio-technology. Artif. Organs 1995, 19, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Fong, R.B.; Long, C.J.; Stayton, P.S.; Hoffman, A.S. Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 2001, 411, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.; Kim, S.W.; Bae, Y.H. Thermosensitive sol-gel reversible hydrogels. Advance Drug Delivery Rev. 2002, 54, 37–51. [Google Scholar] [CrossRef]
- Klouda, L. Thermoresponsive hydrogels in biomedical applications: A seven-year update. Eur. J. Pharm. Biopharm. 2015, 97, 338–349. [Google Scholar] [CrossRef]
- Ward, M.A.; Georgiou, T.K. Thermoresponsive polymers for biomedical applications. Polymer 2011, 3, 1215–1242. [Google Scholar] [CrossRef] [Green Version]
- Boustta, M.; Colombo, P.E.; Lenglet, S.; Poujol, S.; Vert, M. Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. J. Control. Release 2014, 174, 1–6. [Google Scholar] [CrossRef]
- Iizawa, T.; Taketa, H.; Maruta, M.; Ishido, T.; Gotoh, T.; Sakohara, S. Synthesis of porous poly (N-isopropylacrylamide) gels beads by sedimentation polymerization and their morphology. J. Appl. Polym. Sci. 2007, 104, 842–850. [Google Scholar] [CrossRef]
- Sisworo, R.R.; Hasegawa, M.; Kawabata, N. Convective heat transfer inside a fluid-filled rectangular cavity. Int. J. Appl. Eng. Res. 2018, 13, 1789–1797. [Google Scholar]
- Wang, H.D.; Chu, L.Y.; Yu, X.Q.; Xie, R.; Yang, M.; Xu, D.; Zhang, J.; Hu, L. Thermosensitive affinity behavior of poly(N-isopropylacrylamide) hydrogels with β-cyclodextrin moieties. Ind. Eng. Chem. Res. 2007, 46, 1511–1518. [Google Scholar] [CrossRef]
- Zhang, N.; Zheng, S.; Pan, Z.; Liu, Z. Phase transition effects on mechanical properties of NIPA hydrogel. Polymers 2018, 10, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, M.; Kamikido, T.; Kawabata, N. Behavior of thermo-sensitive gel in polymer solution. Int. Commun. Heat Mass Transf. 2016, 76, 55–58. [Google Scholar] [CrossRef]
- Oh, K.S.; Oh, J.S.; Choi, H.S.; Bae, C.Y. Effect of cross-linking density on swelling behavior of NIPA gel particles. Macromolecules 1998, 31, 7328–7335. [Google Scholar] [CrossRef]
- Li, Y.; Tanaka, T. Study of the universality class of the gel network system. Journal of Chemical Physics. 1989, 90, 5161. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Zhuo, R.X. Preparation of fast responsive, temperature-sensitive poly (N-isopropylacrylamide) hydrogel. Macromol. Chem. Phys. 1999, 200, 2602–2605. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Zhuo, R.X.; Yang, Y. Using mixed solvent to synthesize temperature sensitive poly(N-isopropylacrylamide) gel with rapid dynamics properties. Biomaterials 2002, 23, 1313–1318. [Google Scholar] [CrossRef]
- Zhao, Q.; Sun, J.; Zhou, Q. Synthesis of macroporous poly (N-isopropylacrylamide) hydrogel with ultrarapid swelling-deswelling properties. J. Appl. Polym. Sci. 2007, 104, 4080–4087. [Google Scholar] [CrossRef]
- Zhao, Q.; Sun, J.; Ling, Q.; Zhou, Q. Synthesis of macroporous thermosensitive hydrogels: A novel method of controlling pore size. Langmuir 2009, 25, 3249–3254. [Google Scholar] [CrossRef]
- Bouquey, M.; Serra, C.; Berton, N.; Prat, L.; Hadziioannou, G. Microfluidic synthesis and assembly of reactive polymer beads to form new structured polymer materials. Chem. Eng. J. 2008, 135, S93–S98. [Google Scholar] [CrossRef]
- Seo, M.; Nie, Z.; Xu, S.; Mok, M.; Lewis, P.C.; Graham, R.; Kumacheva, E. Continuous microfluidic reactors for polymer particles. Langmuir 2005, 21, 11614–11622. [Google Scholar] [CrossRef] [PubMed]
- Nisisako, T.; Torii, T.; Higuchi, T. Novel microreactors for functional polymer beads. Chem. Eng. J. 2004, 101, 23–29. [Google Scholar] [CrossRef]
- Zygan, Z.T.; Cabral, J.T.; Beers, K.L.; Amis, E.J. Microfluidic platform for the generation of organic-phase microreactors. Langmuir 2005, 21, 3629–3634. [Google Scholar]
- Quevedo, E.; Steinbacher, J.; McQuade, D.T. Interfacial polymerization within a simplified microfluidic device: Capturing capsules. J. Am. Chem. Soc. 2005, 127, 10498–10499. [Google Scholar] [CrossRef] [PubMed]
- Cramer, C.; Fischer, P.; Windhab, E.J. Drop formation in a co-flowing ambient fluid. Chem. Eng. Sci. 2004, 59, 3045–3058. [Google Scholar] [CrossRef]
- Zhang, D.F.; Stone, H.A. Drop formation in viscous flows at a vertical capillary tube. Phys. Fluids 1997, 9, 2234–2242. [Google Scholar] [CrossRef] [Green Version]
- Sandulache, M.; Paullier, P.; Bouzerar, R.; Yzet, T.; Baledent, O.; Salsac, A. Liquid injection in confined co-flow: Application to portal vein embolization by glue injection. Phys. Fluids 2012, 24, 081902. [Google Scholar] [CrossRef] [Green Version]
- Lan, W.; Jing, S.; Guoa, X.; Li, S. Study on “interface—shrinkage—driven” breakup of droplets in co-flowing microfluidic devices. Chem. Eng. Sci. 2017, 158, 58–63. [Google Scholar] [CrossRef]
- Wu, P.; Luo, Z.; Liu, Z.; Li, Z.; Chen, C.; Feng, L.; He, L. Drag-induced breakup mechanism for droplet generation in dripping within flow focusing microfluidics. Chin. J. Chem. Eng. 2015, 23, 7–14. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, F. Flow rate effect on droplet control in a co-flowing microfluidic device. Microfluid. Nanofluid. 2007, 3, 341–346. [Google Scholar] [CrossRef]
- Wang, W.; Ngan, K.H.; Gong, J.; Angeli, P. Observations on single drop formation from a capillary tube at low flow rates. Colloids Surf. A Physicochem. Eng. Asp. 2009, 334, 197–202. [Google Scholar] [CrossRef]
- Sugiura, S.; Nakajima, M.; Iwamoto, S.; Seki, M. Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 2001, 17, 5562–5566. [Google Scholar] [CrossRef]
- Thorsen, T.; Roberts, R.W.; Arnold, F.H.; Quake, S.R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 2001, 86, 4163–4166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheele, G.F.; Meister, B.J. Drop formation at low velocities in liquid-liquid systems: Part I. Prediction of drop volume. AIChE J. 1968, 14, 9–15. [Google Scholar] [CrossRef]
- Leong, J.; Lim, T.; Pogaku, R.; Chan, E. Size prediction of k-carrageenan droplets formed in co-flowing immiscible liquid. Particuology 2011, 9, 637–643. [Google Scholar] [CrossRef]
- Umbanhowar, P.B.; Prasad, V.; Weitz, D.A. Monodispersed emulsion generation via drop break off in a coflowing stream. Langmuir 2000, 16, 347–351. [Google Scholar] [CrossRef]
- Baroud, C.N.; Gallaire, F.; Dangla, R. Dynamics of microfluidic droplets. Lab Chip 2010, 10, 2032–2045. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.T.; Maa, J.R.; Yang, Y.; Chang, C. Drop formation from flat tip nozzles in liquid-liquid system. Int. Commun. Heat Mass Transf. 2001, 28, 681–692. [Google Scholar] [CrossRef]
- Schneider, T.; Chapman, G.H.; Hafeli, U.O. Effects of chemical and physical parameters in the generation of microspheres by hydrodynamic flow focusing. Colloid Surf. B Biointerfaces 2011, 87, 361–368. [Google Scholar] [CrossRef]
- Zhu, K.J.; Jiang, H.L.; Du, X.Y.; Wang, J.; Xu, W.X.; Liu, S.F. Preparation and characterization of hCG-loaded polylactide or poly(lactide-co-glycolide) microspheres using a modified water-in-oil-in-water (w/o/w) emulsion solvent evaporation technique. J. Microencapsul. 2001, 18, 247–260. [Google Scholar]
- Gupta, A.; Matharoo, H.S.; Makkar, D.; Kumar, R. Droplet formation via squeezing mechanism in a microfluidic flow-focusing device. Comput. Fluids 2014, 100, 218–226. [Google Scholar] [CrossRef]
- Christopher, G.F.; Anna, S.L. Microfluidic methods for generating continuous droplet streams. J. Phys. D Appl. Phys. 2007, 40, R319–R336. [Google Scholar] [CrossRef]
- Nunes, J.K.; Tsai, S.S.H.; Wan, J.; Stone, H.A. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. J. Phys. D Appl. Phys. 2013, 46, 114002. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Cristini, V.; Lee, A.P. Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens. Actuators B 2006, 114, 350–356. [Google Scholar] [CrossRef]
Flow Rate of 50 × 10−6 m2/s (× 10−9 m3/s) | Gel Diameter (mm) | Flow Rate of 300 × 10−6 m2/s (× 10−9 m3/s) | Gel Diameter (mm) |
---|---|---|---|
5.94 | 1.29 | 3.96 | 1.04 |
7.92 | 1.19 | 7.92 | 0.77 |
11.9 | 1.04 | 11.9 | 0.65 |
15.8 | 0.95 | 13.9 | 0.60 |
15.8 | 0.57 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sisworo, R.R.; Hasegawa, M.; Nakashima, K.; Norimatsu, Y.; Tada, Y. Generation of Monodispersed Spherical Thermosensitive Gels and Their Swelling and Shrinking Behaviors in Aqueous Polymeric Solutions. Appl. Sci. 2020, 10, 2016. https://doi.org/10.3390/app10062016
Sisworo RR, Hasegawa M, Nakashima K, Norimatsu Y, Tada Y. Generation of Monodispersed Spherical Thermosensitive Gels and Their Swelling and Shrinking Behaviors in Aqueous Polymeric Solutions. Applied Sciences. 2020; 10(6):2016. https://doi.org/10.3390/app10062016
Chicago/Turabian StyleSisworo, Raden Rinova, Masato Hasegawa, Kousuke Nakashima, Yu Norimatsu, and Yukio Tada. 2020. "Generation of Monodispersed Spherical Thermosensitive Gels and Their Swelling and Shrinking Behaviors in Aqueous Polymeric Solutions" Applied Sciences 10, no. 6: 2016. https://doi.org/10.3390/app10062016
APA StyleSisworo, R. R., Hasegawa, M., Nakashima, K., Norimatsu, Y., & Tada, Y. (2020). Generation of Monodispersed Spherical Thermosensitive Gels and Their Swelling and Shrinking Behaviors in Aqueous Polymeric Solutions. Applied Sciences, 10(6), 2016. https://doi.org/10.3390/app10062016