Some Shape, Durability and Structural Strategies at the Conceptual Design Stage to Improve the Service Life of a Timber Bridge for Pedestrians
Abstract
:Featured Application
Abstract
1. Introduction
2. Conceptual Design
3. Main Constraints and Load-Bearing System
4. Design for Durability
5. Structural Behavior and Vibrational Analysis
Modal Calibration
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Crocetti, R. Large-Span Timber Structures. In Proceedings of the World Congress on Civil, Structural, and Environmental Engineering-CSEE’16, Prague, Czech Republic, 30–31 March 2016. [Google Scholar]
- Bignotti, G. Glulam exposed structures for long span bridges in Italy: The importance of an adequate durability design and maintenance programme. In Proceedings of the 11th World Conference on Timber Engineering 2010, Trentino, Italy, 20–24 June 2010; Volume 2, pp. 1373–1379. [Google Scholar]
- Saad, F. Conceptual design for bridges: Are we doing it in education & practice? In Proceedings of the IABSE Conference, Bath, UK, 19–20 April 2017; pp. 85–94. [Google Scholar]
- Corres-Peiretti, H. Sound engineering through conceptual design according to the fib Model Code 2010. Struct. Concr. 2013, 14, 89–98. [Google Scholar] [CrossRef]
- Corvalan, J.; Yambay, G.M.; Corres, E.; Corvalan, J.; Corres, H. Conceptual design between engineers and architects for a complex project. In Proceedings of the International Fib Symposium Conceptual Design Structure, Prague, Czech Republic, 26–28 September 2019; pp. 241–247. [Google Scholar]
- Tardini, C. Dalla Rule of Thumb Agli Inizi Della Scienza Delle Costruzioni in Francia, 1716–1841: I Ponti in Legno (in Italian). Ph.D. Thesis, Conservation of Architectural Heritage XXIV Cycle, Polytechnic of Milan, Milan, Italy, 2012. [Google Scholar]
- Brischke, C.; Behnen, C.J.; Lenz, M.T.; Brandt, K.; Melcher, E. Durability of oak timber bridges-Impact of inherent wood resistance and environmental conditions. Int. Biodeterior. Biodegrad. 2012, 75, 115–123. [Google Scholar] [CrossRef]
- Meyer-Veltrup, L.; Brischke, C.; Niklewski, J.; Frühwald Hansson, E. Design and performance prediction of timber bridges based on a factorization approach. Wood Mater. Sci. Eng. 2018, 13, 167–173. [Google Scholar] [CrossRef]
- Niklewski, J.; Hansson, E.F.; Pousette, A.; Fjällström, P.A. Durability of rain-exposed timber bridge joints and components. In Proceedings of the WCTE 2016-World Conference on Timber Engineering, Vienna, Austria, 22–25 August 2016. [Google Scholar]
- Bignotti, G. 12 years of structural health assessment and maintenance for the glulam timber structure of the Mormanno traffic Bridge in Calabria. Adv. Mater. Res. 2013, 778, 771–778. [Google Scholar] [CrossRef]
- Cavalli, A.; Esposito, M.; Togni, M. State of conservation of unprotected timber footbridges in Central/Northern Italy. In Proceedings of the COST Timber Bridge Conference–CTBC, Bienna, Switzerland, 26–27 September 2014. [Google Scholar]
- EN 1995-1-1. Eurocode 5, Design of Timber Structures, Part 1-1: General–Common Rules and Rules for Buildings; European Committee for Standardization: Bruxelles, Belgium, 2014. [Google Scholar]
- AA.VV. USFS Timber Bridge Manual–Minnesota; Department of Transportation: Saint Paul, MN, USA, 1992. Available online: http://www.dot.state.mn.us/bridge/pdf/insp/USFS-TimberBridgeManual/index.html (accessed on 16 March 2020).
- Pierce, P.C.; Brungraber, R.L.; Lichtenstein, A.; Sabol, S. Covered Bridge Manual; Turner-Fairbank Highway Research Center, Federal Highway Administration: Georgetown Pike, VA, USA, 2005.
- Van Nimmen, K.; Lombaert, G.; De Roeck, G.; Van den Broeck, P. Vibration serviceability of footbridges: Evaluation of the current codes of practice. Eng. Struct. 2014, 59, 448–461. [Google Scholar] [CrossRef]
- Honda, H. Structural performance of modern timber bridges in Japan. In IABSE Symposium Report; International Association for Bridge and Structural Engineering: Zurich, Switzerland, 2017; pp. 366–373. [Google Scholar]
- Thalla, O.; Stiros, S.C. Wind-induced fatigue and asymmetric damage in a timber bridge. Sensors 2018, 18, 3867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parisi, M.A.; Piazza, M. Seismic upgrading of timber structures: New perspectives. In Proceedings of the 8th US National Conference Earthquake Engineering, San Francisco, CA, USA, 18–22 April 2006; Volume 6, pp. 3535–3544. [Google Scholar]
- Casciati, S.; Faravelli, L.; Bortoluzzi, D. Human induced vibrations in a pedestrian timber bridge. In Proceedings of the 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Kos Island, Greece, 12–14 June 2013; pp. 2609–2618. [Google Scholar]
- Toso, M.A.; Gomes, H.M. A coupled biodynamic model for crowd-footbridge interaction. Eng. Struct. 2018, 177, 47–60. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Kimani, S.K. Briefing: Dynamic mode couplings of railway composite track slabs. Proc. Inst. Civ. Eng. Struct. Build. 2020, 173, 81–87. [Google Scholar] [CrossRef]
- Conzett, J. The Traversina Footbridge, Switzerland. Struct. Eng. Int. 1997, 7, 92–94. [Google Scholar] [CrossRef]
- UNI EN 1990. Eurocode 0, Basic of Structural Design; European Committee for Standardization: Bruxelles, Belgium, 2006. [Google Scholar]
- UNI EN 1001-2. Durability of Wood and Wood Based Products-Terminology-Part 2: Vocabulary; European Committee for Standardization: Bruxelles, Belgium, 2005. [Google Scholar]
- EN 335. Durability of Wood and Wood Based Products, Use Classes: Definitions, Application to Solid Wood and Wood-Based Products; European Committee for Standardization: Bruxelles, Belgium, 2013. [Google Scholar]
- EN 350-2. Durability of Wood and Wood Based Products, Natural Durability of wood, Part 2: Guide to natural Durability and Treatability of Selected Wood Species of Importance in Europe; European Committee for Standardization: Bruxelles, Belgium, 1994. [Google Scholar]
- EN 460. Durability of Wood and Wood Based Products, Natural Durability of Solid Wood, Guide to the Durability Requirements for Wood to be Used in Hazard Classes; European Committee for Standardization: Bruxelles, Belgium, 1995. [Google Scholar]
- Steffen, M. Moisture and Wood-Frame Buildings, Building Performances Series N.1; Canadian Wood Council: Ottawa, ON, Canada, 2000. [Google Scholar]
- DM 17.01.2018. Approval of the New Technical Standards for Constructions (In Italian); GU n. 42 20-2-2018- Suppl. Ord. n. 46; Ministero dei Lavori Pubblici: Rome, Italy, 2018.
- CNR-DT 207. Guide for the Assessment of Wind Actions and Effects on Structures; Advisory Committee on Technical Recommendations for Construction: Rome, Italy, 2008; (review 2017–2018). [Google Scholar]
- UNI EN 338: 2016. Structural Timber, Strength Classes; European Committee for Standardization: Bruxelles, Belgium, 2016. [Google Scholar]
- UNI EN 14080: 2013. Timber Structures-Glued Laminated Timber and Glued Solid Timber–Requirements; European Committee for Standardization: Bruxelles, Belgium, 2013. [Google Scholar]
- Fiore, A.; Monaco, P. Analysis of the seismic vulnerability of the “Quinto Orazio Flacco” school in Bari (Italy) [Analisi della vulnerabilità sismica del Liceo “Quinto Orazio Flacco”, Bari]. Ing. Sismica 2011, 28, 43–62. [Google Scholar]
- Colapietro, D.; Fiore, A.; Netti, A.; Fatiguso, F.; Marano, G.C.; De Fino, M.; Cascella, D.; Ancona, A. Dynamic identification and evaluation of the seismic safety of a masonry bell tower in the south of Italy. In Proceedings of the 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Kos Island, Greece, 12–14 June 2013; pp. 3459–3470. [Google Scholar]
GL24h | GL28h | GL32h | S275H | S355 | ||
---|---|---|---|---|---|---|
ft,0,k [kN/cm2] | 1.92 | 2.23 | 2.56 | fyk [kN/cm2] | 27.5 | 35.5 |
fc,0,k [kN/cm2] | 2.4 | 2.8 | 3.2 | ftk [kN/cm2] | 43 | 51 |
E [kN/cm2] | 1150 | 1260 | 1420 | E [kN/cm2] | 21000 | 21000 |
γ [kN/m3] | 4.2 | 4.6 | 4.9 | γ [kN/m3] | 78.5 | 78.5 |
Modal Mass | Effective Modal Mass | Modal Participating Mass Ratio | Nat. Freq. | Nat. Per. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
nr. | Mi [kg] | meX [kg] | meY [kg] | meZ [kg] | m@jX [kgm2] | m@jY [kgm2] | m@jZ [kgm2] | ρmeX | ρmeY | ρmeZ | f [Hz] | T [s] |
1 | 21094.16 | 0.00 | 50308.9 | 0.00 | 4158.6 | 0.00 | 2.28 | 0.000 | 0.662 | 0.000 | 2.989 | 0.335 |
2 | 15913.94 | 0.00 | 6975 | 0.00 | 191285 | 0.00 | 120.83 | 0.000 | 0.092 | 0.000 | 4.178 | 0.239 |
3 | 34247.83 | 0.00 | 0.00 | 54767.6 | 0.77 | 118.43 | 0.00 | 0.000 | 0.000 | 0.721 | 4.580 | 0.218 |
14 | 12602.66 | 52917.5 | 0.00 | 0.00 | 0.01 | 1182525 | 0.97 | 0.696 | 0.000 | 0.000 | 15.463 | 0.065 |
Modal Mass | Effective Modal Mass | Modal Participating Mass Ratio | Nat. Freq. | Nat. Per. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
nr. | Mi [kg] | meX [kg] | meY [kg] | meZ [kg] | m@jX [kgm2] | m@jY [kgm2] | m@jZ [kgm2] | ρmeX | ρmeY | ρmeZ | f [Hz] | T [s] |
1 | 32600.03 | 0.00 | 58121.09 | 0.00 | 679.33 | 0.01 | 0.21 | 0.000 | 0.763 | 0.000 | 3.169 | 0.316 |
2 | 34323.16 | 0.00 | 0.00 | 54911.9 | 0.78 | 118.15 | 0.00 | 0.000 | 0.000 | 0.721 | 4.576 | 0.219 |
3 | 13592.08 | 0.00 | 6.53 | 0.00 | 466015 | 0.00 | 903.1 | 0.000 | 0.000 | 0.000 | 5.083 | 0.197 |
14 | 12619.2 | 52992.5 | 0.00 | 0.00 | 0.01 | 1188580 | 1.04 | 0.696 | 0.000 | 0.000 | 15.459 | 0.065 |
Modal Mass | Effective Modal Mass | Modal Participating Mass Ratio | Nat. Freq. | Nat. Per. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
nr. | Mi [kg] | meX [kg] | meY [kg] | meZ [kg] | m@jX [kgm2] | m@jY [kgm2] | m@jZ [kgm2] | ρmeX | ρmeY | ρmeZ | f [Hz] | T [s] |
1 | 19268.17 | 0.00 | 51966.2 | 0.00 | 32594 | 0.00 | 84.55 | 0.000 | 0.675 | 0.000 | 3.721 | 0.269 |
2 | 34445.37 | 0.00 | 0.00 | 55375.5 | 0.77 | 116.31 | 0.00 | 0.000 | 0.000 | 0.720 | 4.635 | 0.216 |
3 | 18015.99 | 0.00 | 4181.06 | 0.00 | 421632 | 0.00 | 1309 | 0.000 | 0.054 | 0.000 | 5.890 | 0.170 |
14 | 9177.12 | 59315.2 | 0.00 | 0.00 | 0.01 | 376924.1 | 0.54 | 0.773 | 0.000 | 0.000 | 16.501 | 0.061 |
Vertical Vibration | avert ≤ 0,7 m/s2 | ||
2nd mode | |||
T [s] | fvert [Hz] | M [kg] | ζ |
0.216 | 4.635 | 94531 | 0.015 |
walking pedestrian | if fvert < 5,0 Hz | ||
avert,1 [m/s2] = | 100/Mζ = | 0.07 | VERIFIED |
Horizontal Vibration | ahor ≤ 0,2 m/s2 | ||
1st mode | |||
T [s] | fhor [Hz] | ||
0.269 | 3.721 | ||
walking pedestrian | fhor > 2,5 Hz VERIFIED |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiore, A.; Liuzzi, M.A.; Greco, R. Some Shape, Durability and Structural Strategies at the Conceptual Design Stage to Improve the Service Life of a Timber Bridge for Pedestrians. Appl. Sci. 2020, 10, 2023. https://doi.org/10.3390/app10062023
Fiore A, Liuzzi MA, Greco R. Some Shape, Durability and Structural Strategies at the Conceptual Design Stage to Improve the Service Life of a Timber Bridge for Pedestrians. Applied Sciences. 2020; 10(6):2023. https://doi.org/10.3390/app10062023
Chicago/Turabian StyleFiore, Alessandra, Martino Antonio Liuzzi, and Rita Greco. 2020. "Some Shape, Durability and Structural Strategies at the Conceptual Design Stage to Improve the Service Life of a Timber Bridge for Pedestrians" Applied Sciences 10, no. 6: 2023. https://doi.org/10.3390/app10062023
APA StyleFiore, A., Liuzzi, M. A., & Greco, R. (2020). Some Shape, Durability and Structural Strategies at the Conceptual Design Stage to Improve the Service Life of a Timber Bridge for Pedestrians. Applied Sciences, 10(6), 2023. https://doi.org/10.3390/app10062023