Multiple Interactive Attention Networks for Aspect-Based Sentiment Classification
Abstract
:1. Introduction
- We took advantage of MHA and Location-Point-Wise Feed-Forward Networks (LPFFN) to obtain the hidden state interactively in parallel. Besides, we applied pre-trained Bidirectional Encoder Representations from Transformers (BERT) [8] in our model.
- We used the CTI and target-context pair to help us obtain and fuse useful information. We also verified the effectiveness of these two methods.
- We experimented on different public authoritative datasets: restaurant reviews and laptop reviews of the SemEval-2014 Task 4 dataset, the ACL(Annual Meeting of the Association for Computational Linguistics) 14 Twitter dataset, SemEval-2015 Task 12 dataset, SemEval-2016 Task 5 dataset. The experimental results showed our model outperformed state-of-the-art methods.
2. Related Works
3. Model Description
3.1. Task Definition
3.2. Input Embedding Layer
3.2.1. Masked Language Model
3.2.2. Next Sentence Prediction
3.3. Attention Encoding Layer
3.3.1. Multi-Head Attention
3.3.2. Location Point-Wise Feed-Forward Networks
3.4. Target-Context Interaction Layer
3.4.1. Gated Recurrent Neural Networks (GRU)
3.4.2. Target-Context-Interaction
3.5. Context-Target-Interaction Layer
3.5.1. Context-Target Interaction
3.5.2. Coefficient Loss Forwarding Mechanism
3.6. Select Convolution Layer
4. Experiment
4.1. Experimental Datasets
4.2. Experimental Settings
4.3. Model Comparisons
4.4. Analysis of Model
4.4.1. Analysis of CTI
4.4.2. Case Study
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Maria Pontiki, D.G.; John Pavlopoulos, H.P.; Ion Androutsopoulos, S.M. Semeval-2014 task 4: SemEval-2014 Task 4: Aspect Based Sentiment Analysis. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin, Ireland, 23–24 August 2014; pp. 27–35. [Google Scholar]
- Pontiki, M.; Galanis, D.; Papageorgiou, H.; Androutsopoulos, I.; Manandhar, S.; Mohammad, A.S.; Al-Ayyoub, M.; Zhao, Y.; Qin, B.; De Clercq, O.; et al. Semeval-2016 task 5: Aspect based sentiment analysis. In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), San Diego, CA, USA, 16–17 June 2016; pp. 19–30. [Google Scholar]
- Vinodhini, G.C.; Handrasekaran, R.M. Sentiment analysis and opinion mining: A survey. Int. J. 2012, 2, 282–292. [Google Scholar]
- Liu, P.; Qiu, X.; Huang, X. Recurrent neural network for text classification with multi-task learning. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016; pp. 2873–2879. [Google Scholar]
- Mikolov, T.; Karafiát, M.; Burget, L.Š.; Černocký, J.; Khudanpur, S. Recurrent neural network based language model. In Proceedings of the Eleventh Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, 26–30 September 2010; pp. 1045–1048. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Firat, O.; Cho, K.; Bengio, Y. Multi-way, multilingual neural machine translation with a shared attention mechanism. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 866–875. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pretraining of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota, 2–7 June2019; Volume 1, pp. 4171–4186. [Google Scholar]
- Read, J. Using emoticons to reduce dependency in machine learning techniques for sentiment classification. In Proceedings of the ACL Student Research Workshop, Ann Arbor, MI, USA, 27 June 2005; pp. 43–48. [Google Scholar]
- Duwairi, R.M.; Qarqaz, I. Arabic sentiment analysis using supervised classification. In Proceedings of the 2014 International Conference on Future Internet of Things and Cloud, Barcelona, Spain, 27–29 August 2014; pp. 579–583. [Google Scholar]
- Narayanan, V.; Arora, I.; Bhatia, A. Fast and accurate sentiment classification using an enhanced Naive Bayes model. In Proceedings of the Intelligent Data Engineering and Automated Learning—IDEAL 2013, Hefei, China, 20–23 October 2013; pp. 194–201. [Google Scholar]
- Rathore, S.; Park, J.H. Semi-supervised learning based distributed attack detection framework for IoT. Appl. Soft Comput. 2018, 72, 79–89. [Google Scholar] [CrossRef]
- Rathore, S.; Sharma, P.K.; Loia, V.; Jeong, Y.S.; Park, J.H. Social network security: Issues, challenges, threats, and solutions. Inf. Sci. 2017, 421, 43–69. [Google Scholar] [CrossRef]
- Tang, D.; Qin, B.; Feng, X.; Liu, T. Effective LSTMs for Target-Dependent Sentiment Classification. In Proceedings of the COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, 11–17 December 2016; pp. 3298–3307. [Google Scholar]
- Zheng, J.; Cai, F.; Shao, T.; Chen, H. Self-interaction attention mechanism-based text representation for document classification. Appl. Sci. 2018, 8, 613. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Huang, M.; Zhao, L. Attention-based LSTM for aspect-level sentiment classification. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 606–615. [Google Scholar]
- Tang, D.; Qin, B.; Liu, T. Aspect Level Sentiment Classification with Deep Memory Network. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 214–224. [Google Scholar]
- Ma, D.; Li, S.; Zhang, X.; Wang, H. Interactive attention networks for aspect-level sentiment classification. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 4068–4074. [Google Scholar]
- Gu, S.; Zhang, L.; Hou, Y.; Song, Y. A position-aware bidirectional attention network for aspect-level sentiment analysis. In Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 774–784. [Google Scholar]
- Tang, J.; Lu, Z.; Su, J.; Ge, Y.; Song, L.; Sun, L.; Luo, J. Progressive Self-Supervised Attention Learning for Aspect-Level Sentiment Analysis. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics(ACL 2019), Florence, Italy, 28 July–2 August 2019; pp. 557–566. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.H.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Kim, H.; Jeong, Y.S. Sentiment Classification Using Convolutional Neural Networks. Appl. Sci. 2019, 9, 2347. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Park, J.; Kim, K.; Nam, J. Samplecnn: End-to-end deep convolutional neural networks using very small filters for music classification. Appl. Sci. 2018, 8, 150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhang, X.; Wang, H.; Cheng, J.; Li, P.; Ding, Z. Chinese medical question answer matching using end-to-end character-level multi-scale CNNs. Appl. Sci. 2017, 7, 767. [Google Scholar] [CrossRef]
- Parikh, A.P.; Täckström, O.; Das, D. Uszkoreit. A decomposable attention model for natural language inference. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP 2016), Austin, TX, USA, 1–4 November 2016; pp. 2249–2255. [Google Scholar]
- Wagner, J.; Arora, P.; Cortes, S.; Barman, U.; Bogdanova, D.; Foster, J.; Tounsi, L. Dcu: Aspect-based polarity classification for semeval task 4. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin, Ireland, 23–24 August 2014; pp. 223–229. [Google Scholar]
- Nakov, P.; Rosenthal, S.; Kiritchenko, S.; Mohammad, S.M.; Kozareva, Z.; Ritter, A.; Stoyanov, V.; Zhu, X. Developing a successful SemEval task in sentiment analysis of Twitter and other social media texts. Lang. Resour. Eval. 2016, 50, 35–65. [Google Scholar] [CrossRef]
- Pontiki, M.; Galanis, D.; Papageorgiou, H.; Manandhar, S.; Androutsopoulos, I. 2015.Semeval-2015 task 12: Aspect based sentiment analysis. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), Denver, CO, USA, 4–5 June 2015; pp. 486–495. [Google Scholar]
- Wang, Q.; Liu, P.; Zhu, Z.; Yin, H.; Zhang, Q.; Zhang, L. A Text Abstraction Summary Model Based on BERT Word Embedding and Reinforcement Learning. Appl. Sci. 2019, 9, 4701. [Google Scholar] [CrossRef] [Green Version]
- Lipton, Z.C.; Elkan, C.; Naryanaswamy, B. Optimal thresholding of classifiers to maximize F1 measure. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases(ECML PKDD 2014), Nancy, France, 15–19 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 225–239. [Google Scholar]
- Li, X.; Bing, L.; Lam, W.; Shi, B. Transformation Networks for Target-Oriented Sentiment Classification. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018; Volume 1, pp. 946–956. [Google Scholar]
- Xu, H.; Liu, B.; Shu, L.; Philip, S.Y. BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 2324–2335. [Google Scholar]
- Sun, K.; Zhang, R.; Mensah, S.; Mao, Y.; Liu, X. Aspect-Level Sentiment Analysis via Convolution over Dependency Tree. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 3–7 November 2019; pp. 5679–5688. [Google Scholar]
- Zhang, C.; Li, Q.; Song, D. Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 3–7 November 2019; pp. 4568–4578. [Google Scholar]
Dataset | Positive | Neutral | Negative | |||
---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | |
Laptop | 994 | 341 | 870 | 128 | 464 | 169 |
Restaurant | 2164 | 728 | 807 | 196 | 637 | 196 |
1561 | 173 | 3127 | 346 | 1560 | 173 | |
Restaurant15 | 912 | 326 | 36 | 34 | 256 | 182 |
Restaurant16 | 1240 | 469 | 69 | 30 | 439 | 117 |
Experimental Environment | Environmental Configuration |
---|---|
Operating system | Windows10 |
GPU | GeForce RTX 2080 |
Programing language | Python 3.6 |
PyTorch | 1.1.0 |
Word embedding tool | BERT |
Models | Rest14 | Laptop | Rest15 | Rest16 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Acc 1 | F1 2 | Acc | F1 | Acc | F1 | Acc | F1 | Acc | F1 | |
ATAE-LSTM | 0.7720 | - | 0.6870 | - | - | - | - | - | ||
IAN | 0.7860 | - | 0.7210 | - | 0.7250 | 0.7081 | 0.7854 | 0.5265 | 0.8474 | 0.5521 |
PBAN | 0.8116 | - | 0.7412 | - | - | - | - | - | ||
TNet-LF | 0.8079 | 0.7084 | 0.7601 | 0.7147 | 0.7468 | 0.7336 | 0.7847 | 0.5947 | 0.8907 | 0.7043 |
TNet-ATT | 0.8339 | 0.7566 | 0.7536 | 0.7202 | 0.7861 | 0.7772 | - | - | ||
BERT-PT | 0.8495 | 0.7696 | 0.7807 | 0.7508 | - | - | - | - | ||
CDT | 0.8230 | 0.7402 | 0.7719 | 0.7299 | 0.7466 | 0.7366 | ||||
ASGCN | 0.8086 | 0.7219 | 0.7262 | 0.6672 | 0.7105 | 0.6945 | 0.7834 | 0.6078 | 0.8833 | 0.6748 |
MIN | 0.8268 | 0.7405 | 0.7978 | 0.7549 | 0.7384 | 0.7237 | 0.8284 | 0.6926 | 0.8912 | 0.6867 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Zhu, Z.; Lu, Q.; Pei, H.; Wu, W.; Guo, Q. Multiple Interactive Attention Networks for Aspect-Based Sentiment Classification. Appl. Sci. 2020, 10, 2052. https://doi.org/10.3390/app10062052
Zhang D, Zhu Z, Lu Q, Pei H, Wu W, Guo Q. Multiple Interactive Attention Networks for Aspect-Based Sentiment Classification. Applied Sciences. 2020; 10(6):2052. https://doi.org/10.3390/app10062052
Chicago/Turabian StyleZhang, Dianyuan, Zhenfang Zhu, Qiang Lu, Hongli Pei, Wenqing Wu, and Qiangqiang Guo. 2020. "Multiple Interactive Attention Networks for Aspect-Based Sentiment Classification" Applied Sciences 10, no. 6: 2052. https://doi.org/10.3390/app10062052
APA StyleZhang, D., Zhu, Z., Lu, Q., Pei, H., Wu, W., & Guo, Q. (2020). Multiple Interactive Attention Networks for Aspect-Based Sentiment Classification. Applied Sciences, 10(6), 2052. https://doi.org/10.3390/app10062052