Thermography of Asteroid and Future Applications in Space Missions
Abstract
:Featured Application
Abstract
1. Introduction
2. Hayabusa2 and Asteroid 162173 Ryugu
3. TIR Observations of Ryugu in Cruise and Approach Phases
4. TIR Observations in Asteroid Proximity Phase
4.1. Global Thermal Images of Ryugu
4.2. High Resolved Global and Local Thermal Images of Ryugu
4.3. Close-up Thermal Images of Ryugu
5. Applications of Thermal Images to Future Space Missions
5.1. Optical Navigation for Approaching the Asteroid
5.2. Detection of Meteoroids and Moons
5.3. Target Maker Tracking
5.4. Deployable Satellite or Rover Navigation
5.5. Operation at Nighttime
5.6. Site Selection and Safe Assessment
5.7. Guidance and Navigation Control of Spacecraft
6. Concluding Remarks
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Okada, T.; Fukuhara, T.; Tanaka, S.; Taguchi, M.; Imamura, T.; Arai, T.; Senshu, H.; Ogawa, Y.; Demura, H.; Kitazato, K.; et al. Thermal infrared imaging experiments of C-type asteroid 162173 Ryugu on Hayabusa2. Space Sci. Rev. 2017, 208, 255–286. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, Y.; Nakazawa, S.; Kushiki, K.; Yoshikawa, M.; Kuninaka, H.; Watanabe, S. Flight status of robotic asteroid sample return mission Hayabusa2. Acta Astronaut. 2016, 127, 702–709. [Google Scholar] [CrossRef]
- Fukuhara, T.; Taguchi, M.; Imamura, T.; Nakamura, M.; Ueno, M.; Suzuki, M.; Iwagami, N.; Sato, M.; Mitsuyama, K.; Hashimoto, G.L.; et al. LIR: Longwave infrared camera onboard the Venus orbiter Akatsuki. Earth Planets Space 2011, 63, 1009–1018. [Google Scholar] [CrossRef]
- Okada, T.; Fukuhara, T.; Tanaka, S.; Taguchi, M.; Arai, T.; Senshu, H.; Sakatani, N.; Shimaki, Y.; Demura, H.; Ogawa, Y.; et al. Highly porous nature of a primitive asteroid revealed by thermal imaging. Nature 2020, 1–5. [Google Scholar] [CrossRef]
- Harris, A.W.; Lagerros, J.S.V. Asteroids in the Thermal Infrared. In Asteroids III; University of Arizona Press: Tucson, AZ, USA, 2002; pp. 205–218. [Google Scholar]
- Kieffer, H.H.; Chase, S.; Minor, E.; Muench, G.; Neugebauer, G. Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft. J. Geophys. Res. 1973, 78, 4291–4312. [Google Scholar] [CrossRef] [Green Version]
- Chase, S.C.; Miner, E.D.; Morrison, D.; Munch, G.; Neugebauer, G. Mariner 10 infrared radiometer results: Temperatures and thermal properties of the surface of Mercury. Icarus 1976, 28, 565–578. [Google Scholar] [CrossRef]
- Kieffer, H.H.; Martin, T.; Peterfreund, A.; Jakosky, B. Thermal and albedo mapping of Mars during Viking primary mission. J. Geophys. Res. 1977, 82, 4249–4291. [Google Scholar] [CrossRef]
- Christensen, P.R.; Bandfield, J.L.; Hamilton, V.E.; Ruff, S.W.; Kieffer, H.H.; Titus, T.N.; Malin, M.C.; Morris, R.V.; Lane, M.D.; Clark, R.L.; et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J. Geophys. Res. 2001, 106, 23823–23871. [Google Scholar] [CrossRef]
- Paige, D.A.; Foote, M.C.; Greenhagen, B.T.; Schofield, J.T.; Calcutt, S.; Vasavada, A.R.; Preston, D.J.; Taylor, F.W.; Allen, C.C.; Snook, K.J.; et al. The Lunar Reconnaissance Orbiter Diviner lunar radiometer experiment. Space Sci. Rev. 2010, 150, 125–160. [Google Scholar] [CrossRef] [Green Version]
- Groussin, O.; Sunshine, J.M.; Feaga, L.M.; Jorda, L.; Thomas, P.C.; Li, J.Y.; A Hearn, M.F.; Belton, M.J.S.; Besse, S.; Caicich, B.; et al. The temperature, thermal inertia, roughness and color of the nuclei of Comets 103P/Hartley 2 and 9P/Tempel 1. Icarus 2013, 222, 580–594. [Google Scholar] [CrossRef]
- Tholen, D.J. Asteroid taxonomic classifications. In Asteroids II; University of Arizona Press: Tucson, AZ, USA, 1989; pp. 1139–1150. [Google Scholar]
- DeMeo, F.E.; Alexander, C.M.O.; Walsh, K.J.; Chapman, C.R.; Binzel, R.P. The compositional structure of the asteroid belt. In Asteroids IV; Michel, P., DeMeo, F.E., Bottke, W.F.U., Eds.; University of Arizona Press: Tucson, AZ, USA, 2015; pp. 13–41. [Google Scholar]
- Flynn, G.J.; Consolmagno, G.J.; Brown, P.; Macke, R.J. Physical properties of the stone meteorites: Implications for the properties of their parent bodies. Chemie der Erde 2018, 78, 269–298. [Google Scholar] [CrossRef]
- Housen, K.R.; Holsapple, K.A. Ejecta from impact craters. Icarus 2011, 211, 856–875. [Google Scholar] [CrossRef]
- Fujiwara, A.; Kawaguchi, J.; Yeomans, D.K.; Abe, M.; Mukai, T.; Okada, T.; Saito, J.; Yano, H.; Yoshikawa, M.; Scheeres, D.J.; et al. The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa. Science 2006, 312, 1330–1334. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, S.; Abe, M.; Arakawa, M.; Fujimoto, M.; Okada, T.; Okazaki, R.; Sawada, H.; Sugita, S.; Takano, Y.; Tanaka, S.; et al. Hayabusa2: Scientific importance of samples returned from C-type Near-Earth asteroid (162173) 1999 JU3. Geochem. J. 2014, 48, 571–587. [Google Scholar] [CrossRef] [Green Version]
- Mueller, T.G.; Durech, J.; Ishiguro, M.; Mueller, M.; Krühler, T.; Yang, H.; Kim, M.-J.; O’Rourke, L.; Usui, F.; Kiss, C.; et al. Hayabusa-2 mission target asteroid 162173 Ryugu (1999 JU3): Searching for the object’s spin-axis orientation. A&A 2017, 599, A103. [Google Scholar]
- Watanabe, S.; Hirabayashi, M.; Hirata, N.; Noguchi, R.; Shimaki, Y.; Ikeda, H.; Tatsumi, E.; Yoshikawa, M.; Kikuchi, S.; Yabuta, H.; et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top-shaped rubble pile. Science 2019, 364, 268–272. [Google Scholar] [CrossRef]
- Sugita, S.; Honda, R.; Morota, T.; Kameda, S.; Sawada, H.; Tatsumi, E.; Yamada, M.; Honda, C.; Yokota, Y.; Kouyama, T.; et al. The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes. Science 2019, 364, 552. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, T.; Kase, T.; Shiina, T.; Mita, M.; Namiki, N.; Senshu, H.; Yamada, R.; Noda, H.; Kunimori, H.; Hirata, N.; et al. Development of the Laser Altimeter (LIDAR) for Hayabusa2. Space Sci. Rev. 2017, 208, 33–47. [Google Scholar] [CrossRef]
- Kitazato, K.; Milliken, R.E.; Iwata, T.; Abe, M.; Ohtake, M.; Matsuura, S.; Arai, T.; Nakauchi, Y.; Nakamura, T.; Matsuoka, M.; et al. Surface composition of asteroid 162173 Ryugu as observed by the Hayabusa2 NIRS3 instrument. Science 2019, 364, 272–275. [Google Scholar]
- Okada, T.; Fukuhara, T.; Tanaka, S.; Taguchi, M.; Arai, T.; Senshu, H.; Demura, H.; Ogawa, Y.; Kouyama, T.; Sakatani, N.; et al. Earth and Moon Observations by Thermal Infrared Imager on Hayabusa2 and the application to detectability of Asteroid 162173 Ryugu. Planet. Space Sci. 2018, 158, 46–52. [Google Scholar] [CrossRef]
- Hergenrother, C.W.; Maleszewski, C.K.; Nolan, M.C.; Li, J.-Y.; Drouet d’Aubigny, C.Y.; Shelly, F.C.; Howell, E.S.; Kareta, T.R.; Izawa, M.R.M.; Barucci, M.A.; et al. The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations. Nature Commun. 2019, 10, 1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takita, J.; Senshu, H.; Tanaka, S. Feasibility and Accuracy of Thermophysical Estimation of Asteroid 162173 Ryugu (1999 JU3) from the Hayabusa2 Thermal Infrared Imager. Space Sci. Rev. 2017, 208, 287–315. [Google Scholar] [CrossRef]
- Shimaki, Y.; Senshu, H.; Sakatani, N.; Fukuhara, T.; Tanaka, S.; Arai, T.; Demura, H.; Suko, K.; Okada, T. Surface roughness and thermal inertia of asteroid Ryugu inferred from TIR on Hayabusa2. Lunar Planet. Sci. Conf. 2019, 50, 1724. [Google Scholar]
- Jaumann, R.; Schmitz, N.; Ho, T.-M.; Schröder, S.E.; Otto, K.A.; Stepham, K.; Elgner, S.; Krohn, K.; Preusker, F.; Scholten, F.; et al. In-situ investigation of asteroid (162173) Ryugu by the Mobile Asteroid Surface Scout (MASCOT) Camera (MASCam). Science 2019, 365, 817–820. [Google Scholar] [CrossRef]
- Grott, M.; Knollenberg, J.; Hamm, M.; Ogawa, K.; Jaumann, R.; Otto, K.A.; Delbo, M.; Michel, P.; Biele, J.; Neumann, W.; et al. Low Thermal Conductivity Boulder with High Porosity Identified on C-type Asteroid (162173) Ryugu. Nature Astron. 2019, 3, 971–976. [Google Scholar] [CrossRef]
- Saiki, T.; Imamura, H.; Arakawa, M.; Wada, K.; Takagi, Y.; Hayakawa, M.; Shirai, K.; Yano, H.; Okamoto, C. The Small Carry-on Impactor (SCI) and the Hayabusa2 Impact Experiment. Space Sci. Rev. 2017, 208, 165–186. [Google Scholar] [CrossRef]
- Arakawa, M.; Wada, K.; Saiki, T.; Kadono, T.; Takagi, Y.; Shirai, K.; Okamoto, C.; Yano, H.; Hayakawa, M.; Nakazawa, S.; et al. Scientific Objectives of Small Carry-on Impactor (SCI) and Deployable Camera 3 Digital (DCAM3-D): Observation of an Ejecta Curtain and a Crater Formed on the Surface of Ryugu by an Artificial High-Velocity Impact. Space Sci. Rev. 2017, 208, 187–212. [Google Scholar] [CrossRef]
- Okada, T.; Fukuhara, T.; Tanaka, S.; Taguchi, M.; Arai, T.; Sakatani, N.; Shimaki, Y.; Senshu, H.; Demura, H.; Ogawa, Y.; et al. Thermal inertia of asteroid Ryugu using dawn-side thermal images by TIR on Hayabusa2. In Proceedings of the EPSC-DPS2019, Geneva, Switzerland, 15–19 September 2019. EPSC-DPS2019-268. [Google Scholar]
- Carnelli, I.; Kueppers, M.; Martino, P.; Michael, P. Hera mission team, Hera, the European component of the Asteroid Impact and Deflection assessment (AIDA) mission. In Proceedings of the ISTS2019, Fukui, Japan, 16–21 June 2019. [Google Scholar]
Items | Performance |
---|---|
Total Mass | 3.28 kg (DE is not included) |
Total Power | 18 W (nominal) (DE is not included) |
Detector | Uncooled bolometer array NEC 320A (VO) (anti-reflection coating) |
Pixels | 344 × 260 (effective 328 × 248) |
Field of View (FOV) | 16.7° × 12.7° |
IFOV | 0.89 mrad (0.051°) |
Aperture | 42 mm (effective), lens diameter is 47 mm |
MTF (@Nyquist Freq.) | 0.5 |
F-number | 1.4 |
Temperature range | 233–423 K (well calibrated), 150–460 K (detectable range) |
NETD | <0.3 |
Absolute Temperature Range | <3 K |
A/D Converter | 12 bit (15 bit after summed) |
Reference Temperature | Shutter temperature (monitored, nominally at 301 K) |
Frame Rate | 60 Hz |
Image Summation | 2^m, m = 0 to 7 (1,2, …,128) |
Consecutive shot numbers | Programable (max 128 images), current programed: 30 |
Date of Observation | Distance from Sun [au] | Sun–Probe–Earth Angle [deg] | Distance from Ryugu [km] |
---|---|---|---|
10 June 2018 | 0.9650 | 17.02 | 1550 |
11 June 2018 | 0.9655 | 17.09 | 1380 |
12 June 2018 | 0.9661 | 17.20 | 1150 |
13 June 2018 | 0.9667 | 17.28 | 1000 |
15 June 2018 | 0.9681 | 17.45 | 600 |
16 June 2018 | 0.9689 | 17.53 | 500 |
17 June 2018 | 0.9698 | 17.63 | 350 |
18 June 2018 | 0.9707 | 17.71 | 200 |
19 June 2018 | 0.9716 | 17.78 | 170 |
20 June 2018 | 0.9727 | 17.87 | 100 |
22 June 2018 | 0.9749 | 18.01 | 49 |
29 June 2018 | 0.9843 | 18.48 | 20 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, T. Thermography of Asteroid and Future Applications in Space Missions. Appl. Sci. 2020, 10, 2158. https://doi.org/10.3390/app10062158
Okada T. Thermography of Asteroid and Future Applications in Space Missions. Applied Sciences. 2020; 10(6):2158. https://doi.org/10.3390/app10062158
Chicago/Turabian StyleOkada, Tatsuaki. 2020. "Thermography of Asteroid and Future Applications in Space Missions" Applied Sciences 10, no. 6: 2158. https://doi.org/10.3390/app10062158
APA StyleOkada, T. (2020). Thermography of Asteroid and Future Applications in Space Missions. Applied Sciences, 10(6), 2158. https://doi.org/10.3390/app10062158