The Dependence of Spontaneous Charge Generation in Water on its Flow Rate in a Flow-Based Analytical System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Charge Measurements
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kopylov, A.T.; Zgoda, V.G.; Lisitsa, A.V.; Archakov, A.I. Combined use of irreversible binding and MRM technology for low- and ultralow copy-number protein detection and quantitation. Proteomics 2013, 13, 727–742. [Google Scholar] [CrossRef] [PubMed]
- Pleshakova, T.O.; Malsagova, K.A.; Kaysheva, A.L.; Kopylov, A.T.; Tatur, V.Y.; Ziborov, V.S.; Kanashenko, S.L.; Galiullin, R.A.; Ivanov, Y.D. Highly sensitive protein detection by biospecific AFM-based fishing with pulsed electrical stimulation. FEBS Open Bio 2017, 7, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Pleshakova, T.O.; Malsagova, K.A.; Kozlov, A.F.; Kanashenko, S.L.; Ivanova, N.D.; Sadovskaya, T.A.; Archakov, A.I.; Ivanov, Y.D. Highly sensitive AFM-fishing of albumin. Pathogenesis 2016, 14, 23–30. [Google Scholar]
- Archakov, A.I.; Ivanov, Y.D.; Lisitsa, A.V.; Zgoda, V.G. Biospecific irreversible fishing coupled with atomic force microscopy for detection of extremely low-abundant proteins. Proteomics 2009, 9, 1326–1343. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Pleshakova, T.O.; Kozlov, A.F.; Malsagova, K.A.; Krohin, N.V.; Shumyantseva, V.V.; Shumov, I.D.; Popov, V.P.; Naumova, O.V.; Fomin, B.I.; et al. SOI nanowire for the high-sensitive detection of HBsAg and α-fetoprotein. Lab Chip 2012, 12, 5104–5111. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Pleshakova, T.O.; Malsagova, K.A.; Kozlov, A.F.; Kaysheva, A.L.; Shumov, I.D.; Galiullin, R.A.; Kurbatov, L.K.; Popov, V.P.; Naumova, O.V.; et al. Detection of marker miRNAs in plasma using SOI—NW biosensor. Sens. Actuators B Chem. 2018, 261, 566–571. [Google Scholar] [CrossRef]
- Böcker, J. Chromatographie. Instrumentelle Analytik mit Chromatographie und Kapillarelektrophorese; Vogel Industrie Medien GmbH & Co KG: Wurzburg, Germany, 1997. [Google Scholar]
- Ivanov, Y.D.; Pleshakova, T.O.; Malsagova, K.A.; Kaysheva, A.L.; Kopylov, A.T.; Izotov, A.A.; Tatur, V.Y.; Vesnin, S.G.; Ivanova, N.D.; Ziborov, V.S.; et al. AFM-based protein fishing in the pulsed electric field. Biochem. Suppl. Ser. B Biomed. Chem. 2015, 9, 121–129. [Google Scholar] [CrossRef]
- Suh, Y.K. Numerical study on transient induced-charge electro-osmotic flow in a cavity. Coll. Surf. A Physicochem. Eng. Asp. 2011, 376, 111–121. [Google Scholar] [CrossRef]
- Sow, M.; Widenor, R.; Kumar, A.; Lee, S.W.; Lacks, D.J.; Sankaran, R.M. Strain-Induced Reversal of Charge Transfer in Contact Electrification. Angew. Chem. Int. Ed. 2012, 51, 2695–2697. [Google Scholar] [CrossRef]
- Sood, A.K.; Ghosh, S.; Das, A. Flow-driven voltage generation in carbon nanotubes. Pramana 2005, 65, 571–579. [Google Scholar] [CrossRef]
- Steffes, C.; Baier, T.; Hardt, S. Enabling the enhancement of electroosmotic flow over superhydrophobic surfaces by induced charges. Coll. Surf. A Physicochem. Eng. Aspects 2011, 376, 85–88. [Google Scholar] [CrossRef]
- Leung, K. Surface Potential at the air-water interface computed using density functional theory. J. Phys. Chem. Lett. 2010, 1, 496–499. [Google Scholar] [CrossRef] [Green Version]
- Knorr, N. Squeezing out hydrated protons: Low-frictional-energy triboelectric insulator charging on a microscopic scale. AIP Adv. 2011, 1, 022119. [Google Scholar] [CrossRef] [Green Version]
- McCarty, L.S.; Whitesides, G.M. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem. Int. Ed. 2008, 47, 2188–2207. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, D.; Li, Y.; Zhang, J.; Ye, S.; Cui, J.; Chen, L.; Wang, Z.; Butt, H.-J.; Vollmer, D.; et al. Surface charge printing for programmed droplet transport. Nat. Mater. 2019, 18, 936–941. [Google Scholar] [CrossRef] [Green Version]
- Diaz, A.F.; Felix-Navarro, R.M. A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. J. Electrost. 2004, 62, 277–290. [Google Scholar] [CrossRef]
- Lyklema, J. Fundamentals of Interface and Colloid Science: Soft Colloids; Elsevier: Amsterdam, The Netherlands, 2005; Volume 5. [Google Scholar]
- Lin, Z.-H.; Cheng, G.; Lee, S.; Pradel, K.C.; Wang, Z.L. Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 2014, 26, 4690–4696. [Google Scholar] [CrossRef]
- Moon, J.K.; Jeong, J.; Lee, D.; Pak, H.K. Electrical power generation by mechanicallymodulating electrical double layers. Nat. Commun. 2013, 4, 1487. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.K.; Song, M.W.; Pak, H.K. Investigation of surface charge density on solid–liquid interfaces by modulating the electrical double layer. J. Phys. Condens. Matter. 2015, 27, 194102. [Google Scholar] [CrossRef]
- Banpurkar, A.G.; Sawane, Y.; Wadhai, S.M.; Murade, C.U.; Siretanu, I.; van den Ende, D.; Mugele, F. Spontaneous electrification of fluoropolymer–water interfaces probed by electrowetting. Faraday Discuss 2017, 199, 29–47. [Google Scholar] [CrossRef]
- Park, H.-Y.; Kim, H.K.; Hwang, Y.-H. Water-Through triboelectric nanogenerator based on ti-mesh for harvesting liquid flow. J. Korean Phys. Soc. 2018, 72, 499–503. [Google Scholar] [CrossRef]
- Paillat, T.; Touchard, G. Electrical charges and liquids motion. J. Electrost. 2009, 67, 326–334. [Google Scholar] [CrossRef]
- Touchard, G.; Patzek, T.W.; Radke, C.J. A physicochemical explanation for flow electrification in low-conductivity liquids. IEEE Trans. Ind. Appl. 1996, 32, 1051–1057. [Google Scholar] [CrossRef]
- Ravelo, B.; Duval, F.; Kane, S.; Nsom, B. Demonstration of the triboelectricity effect by the flow of liquid water in the insulating pipe. J. Electrost. 2011, 69, 473–478. [Google Scholar] [CrossRef]
- Choi, D.; Lee, H.; Im, D.J.; Kang, I.S.; Lim, G.; Kim, D.S.; Kang, K.H. Spontaneous electrical charging of droplets by conventional pipetting. Sci. Rep. 2013, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, Y.D.; Pleshakova, T.; Malsagova, K.; Kozlov, A.; Kaysheva, A.; Kopylov, A.; Izotov, A.; Andreeva, E.; Kanashenko, S.; Usanov, S.; et al. Highly sensitive protein detection by combination of atomic force microscopy fishing with charge generation and mass spectrometry analysis. FEBS J. 2014, 281, 4705–4717. [Google Scholar] [CrossRef] [Green Version]
- Tian, R.; Regonda, S.; Gao, J.; Liu, Y.; Hu, W. Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect transistors. Lab Chip 2011, 11, 1952–1961. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Kozlov, A.F.; Galiullin, R.A.; Kolesanova, E.F.; Pleshakova, T.O. Spontaneous charge generation in flowing albumin solutions at 35°C and 38°C. Biosensors 2017, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, Y.D.; Kozlov, A.F.; Galiullin, R.A.; Ivanova, N.D.; Tatur, V.Y.; Ziborov, V.S.; Yushkov, E.S.; Pleshakova, T.O. Generation and accumulation of charge in a flow system for detecting protein markers of diseases. Patologicheskaya Fiziologiya i Eksperimental’naya Terapiya (Pathol. Physiol. Exp. Ther. Rus. J.) 2017, 61, 167–175. [Google Scholar]
- Ivanov, Y.D.; Kozlov, A.F.; Galiullin, R.A.; Kanashenko, S.L.; Usanov, S.A.; Ivanova, N.D.; Ziborov, V.S.; Pleshakova, T.O. Spontaneous generation of charge in the flow-based AFM fishing system. J. Electrost. 2018, 91, 16–20. [Google Scholar] [CrossRef]
- Pershin, S. Conversion of ortho-para H2O isomers in water and a jump in erythrocyte fluidity through a microcapillary at a temperature of 36.6±0.3 °C. Phys. Wave Phenom. 2009, 17, 241–250. [Google Scholar] [CrossRef]
- Kholmanskiy, A.S. Two types of anomalous thermodynamics of water. Apriori. Ser. Iestestvennye i Tekhnicheskie Nauki 2015, 1, 1–17. (In Russian) [Google Scholar]
- Vorobyova, E.A.; Gubar, A.V.; Safyannikova, E.B. Anatomy and Physiology, 5th ed.; Meditsina: Moscow, Russia, 2009. [Google Scholar]
Water Flow Rate | |||||||
---|---|---|---|---|---|---|---|
Parameter | 0.9 mL/min | 1.8 mL/min | 2.7 mL/min | 3.6 mL/min | 5.4 mL/min | 7.2 mL/min | |
1 | Rate of charge accumulation in the cell (∆q/∆t) for linear section of a curve, nC/min | 0.1 to 0.2 | 0.1 to 0.2 | 0.2 to 0.7 | 0.8 to 1.2 | 1.4 | 2.1 |
2 | Gradient of charge accumulation in the cell (∆q/∆t) for jumps, nC/min | 5 | 4 to 8 | 8 | 8 to 14 | 8 | 8 |
3 | Amount of charge (∆q) accumulated as a result of all jumps in a curve, nC | 2.0 to 3.1 (1 to 2 jumps) | 1.7 to 2.5 (1 jump) | 2.0 (1 jump) | 2.0 to 3.6 (1 to 2 jumps) | 2.0 (1 jump) | 2.0 (4 jumps) |
4 | Absolute value of charge (∆q) accumulated in the cell during 7 min, nC | 2.7 to 4.2 | 2.2 to 3.2 | 3.3 to 4.5 | 5.4 to 13.7 | 11.7 | 18.7 |
Ratio of Charge Accumulation to Water Flow Rate | 0.9 mL/min | 1.8 mL/min | 2.7 mL/min | 3.6 mL/min | 5.4 mL/min | 7.2 mL/min | |
---|---|---|---|---|---|---|---|
1 | [(∆q/∆t)]/V for linear section of a curve, nC/min | 0.1 to 0.2 | 0.05 to 0.1 | 0.1 to 0.3 | 0.2 to 0.3 | 0.25 | 0.3 |
2 | [ (∆q/∆t)]/V for jumps, nC/min | 5.5 | 2.5 to 4.5 | 3 | 2.5 to 4 | 1.5 | 1 |
3 | [(∆q)]/V accumulated as a result of all jumps in a curve, nC | 2.2 to 3.4 | 1.0 to 1.4 | 0.8 | 0.6 to 1.0 | 0.5 | 0.3 |
4 | [(∆q)]/V accumulated in the cell during 7 min, nC | 3 to 4.6 | 1.2 to 1.8 | 1.2 to 1.7 | 1.5 to 3.7 | 2.2 | 2.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, Y.D.; Kozlov, A.F.; Galiullin, R.A.; Valueva, A.A.; Pleshakova, T.O. The Dependence of Spontaneous Charge Generation in Water on its Flow Rate in a Flow-Based Analytical System. Appl. Sci. 2020, 10, 2444. https://doi.org/10.3390/app10072444
Ivanov YD, Kozlov AF, Galiullin RA, Valueva AA, Pleshakova TO. The Dependence of Spontaneous Charge Generation in Water on its Flow Rate in a Flow-Based Analytical System. Applied Sciences. 2020; 10(7):2444. https://doi.org/10.3390/app10072444
Chicago/Turabian StyleIvanov, Yuri D., Andrey F. Kozlov, Rafael A. Galiullin, Anastasia A. Valueva, and Tatyana O. Pleshakova. 2020. "The Dependence of Spontaneous Charge Generation in Water on its Flow Rate in a Flow-Based Analytical System" Applied Sciences 10, no. 7: 2444. https://doi.org/10.3390/app10072444
APA StyleIvanov, Y. D., Kozlov, A. F., Galiullin, R. A., Valueva, A. A., & Pleshakova, T. O. (2020). The Dependence of Spontaneous Charge Generation in Water on its Flow Rate in a Flow-Based Analytical System. Applied Sciences, 10(7), 2444. https://doi.org/10.3390/app10072444