Efficiency Improvement Strategy for Multiple Operating Points in Doubly Fed Magnetic Geared Motor
Abstract
:Featured Applications
Abstract
1. Introduction
2. Operating Principle
3. Iron Loss Characteristics
3.1. Characteristics of the Magnetic Flux
3.2. Iron Loss According to the Frequencies of the Inner and Outer Windings
4. Efficiency Improvement Strategy
5. Role Exchange Analysis of Inner and Outer Windings
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Atallah, K.; Calverely, S.D.; Howe, D. Design, analysis and realization of a high-performance magnetic gear. IEE Proc.-Electr. Power Appl. 2004, 151, 135–143. [Google Scholar] [CrossRef]
- Fan, Y.; Gu, L.; Luo, Y.; Han, X.; Cheng, M. Investigation of a new flux-modulated permanent magnet brushless motor for EVs. Sci. World J. 2014, 2014, 540797. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Shen, J.X.; Luk, P.C.K.; Fei, W.Z.; Wang, C.F.; Hao, H. Development of a magnetic-geared permanent-magnet brushless motor. IEEE Trans. Magn. 2009, 45, 4578–4581. [Google Scholar] [CrossRef] [Green Version]
- Jian, L.; Gong, W.; Xu, G.; Liang, J.; Zhao, W. Integrated magnetic-geared machine with sandwiched armature stator for low-speed large-torque applications. IEEE Trans. Magn. 2012, 48, 4184–4187. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Chen, Z. A novel coaxial magnetic gear its integration with permanent-magnet brushless motor. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, L.; Huang, J.; Han, X. Design, analysis, and sensorless control of a self-decelerating permanent-magnet in-wheel motor. IEEE Trans. Ind. Electron. 2014, 61, 5788–5797. [Google Scholar]
- Liu, C.; Lee, C.H.T.; Chen, M. Comparison of outer-rotor permanent magnet machines for in-wheel drives. In Proceedings of the 2013 IEEE International Symposium on Industrial Electronics, Taipei, Taiwan, 28–31 May 2013. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, P.O.; Frandsen, T.V.; Jensen, K.K.; Jessen, K. Experimental evaluation of a motor-integrated permanent-magnet gear. IEEE Trans. Ind. Appl. 2013, 49, 850–859. [Google Scholar] [CrossRef]
- Frandsen, T.V.; Mathe, L.; Berg, N.I.; Holm, R.K.; Matzen, T.N.; Rasmussen, P.O.; Jensen, K.K. Motor integrated permanent magnet gear in a battery electrical vehicle. IEEE Trans. Ind. Appl. 2013, 51, 1516–1525. [Google Scholar] [CrossRef]
- Guo, X.; Wu, S.; Fu, W.; Liu, Y.; Wang, Y.; Zeng, P. Control of a dual-stator flux-modulated motor for electric vehicles. Energies 2016, 9, 517. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Fu, W.; Weng, X. A concept of general flux-modulated electric machines based on a unified theory and its application to developing a novel doubly-fed dual-stator motor. IEEE Trans. Ind. Electron. 2017, 64, 9914–9923. [Google Scholar] [CrossRef]
- Shin, H.; Chang, J. Characteristics analysis of doubly fed magnetic geared motor considering winding frequency conditions. Energies 2018, 11, 2564. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ho, S.L.; Fu, W.N.; Shen, J.X. A novel brushless doubly fed generator for wind power generation. IEEE Trans. Magn. 2012, 48, 4172–4175. [Google Scholar] [CrossRef]
- Khaliq, S.; Atiq, S.; Lipo, T.A.; Kwon, B.I. Rotor pole optimization of novel axial-flux brushless doubly fed reluctance machine for torque enhancement. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, J.; Li, T. A segmented brushless doubly fed generator for wind power applications. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Shin, H.M.; Chang, J.H. Comparison of radial force at modulating pieces in coaxial magnetic gear and magnetic geared machine. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Fiorillo, F.; Novikov, A. An improved approach to power losses in magnetic laminations under nonsinusoidal induction waveform. IEEE Trans. Magn. 1990, 26, 2904–2910. [Google Scholar] [CrossRef]
- Lee, J.H. Efficiency evaluations of synchronous reluctance motor using coupled FEM and Preisach modeling. IEEE Trans. Magn. 2003, 39, 3271–3273. [Google Scholar] [CrossRef]
- Jian, L.; Chau, K.T.; Gong, Y.; Jiang, J.Z.; Yu, C.; Li, W. Comparison of coaxial magnetic gears with different topologies. IEEE Trans. Magn. 2009, 45, 4526–4529. [Google Scholar] [CrossRef]
Contents | Value |
---|---|
Diameter (mm) | 269 |
Stack length (mm) | 156 |
Number of pole pairs of inner winding | 4 |
Number of pole pairs of outer winding | 9 |
Number of modulating pieces | 13 |
Base speed (rpm) | 2492 |
Current density of wire (Arms/mm2) | 10 |
Fill factor | 0.55 |
Phase current (inner/outer), (Arms) | 424/168 |
Number of turns per phase (inner/outer) | 16/36 |
MMF per phase (inner/outer) (AT) | 6784/6048 |
Iron Loss | Inner | Outer | MPs | Total | |
---|---|---|---|---|---|
Type I (finner 180 Hz and fouter 360 Hz) | Hys.(W) | 233.3 | 262.0 | 2.1 | ∙ |
Eddy.(W) | 299.8 | 439.2 | 158.8 | ∙ | |
Excess(W) | 0.037 | 0.084 | 0.040 | ∙ | |
Total (W) | 533.2 | 701.3 | 161.0 | 1395.5 | |
Type II (finner 270 Hz and fouter 270 Hz) | Hys.(W) | 275.5 | 236.2 | 24.0 | ∙ |
Eddy.(W) | 452.4 | 382.7 | 171.8 | ∙ | |
Excess(W) | 0.097 | 0.084 | 0.041 | ∙ | |
Total (W) | 727.9 | 619.0 | 195.8 | 1542.7 | |
Type III (finner 360 Hz and fouter 180 Hz) | Hys.(W) | 354.6 | 227.7 | 50.1 | ∙ |
Eddy.(W) | 628.7 | 375.1 | 200.6 | ∙ | |
Excess(W) | 0.097 | 0.084 | 0.041 | ∙ | |
Total (W) | 983.4 | 602.9 | 250.8 | 1837.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.; Chang, J. Efficiency Improvement Strategy for Multiple Operating Points in Doubly Fed Magnetic Geared Motor. Appl. Sci. 2020, 10, 2456. https://doi.org/10.3390/app10072456
Shin H, Chang J. Efficiency Improvement Strategy for Multiple Operating Points in Doubly Fed Magnetic Geared Motor. Applied Sciences. 2020; 10(7):2456. https://doi.org/10.3390/app10072456
Chicago/Turabian StyleShin, Homin, and Junghwan Chang. 2020. "Efficiency Improvement Strategy for Multiple Operating Points in Doubly Fed Magnetic Geared Motor" Applied Sciences 10, no. 7: 2456. https://doi.org/10.3390/app10072456
APA StyleShin, H., & Chang, J. (2020). Efficiency Improvement Strategy for Multiple Operating Points in Doubly Fed Magnetic Geared Motor. Applied Sciences, 10(7), 2456. https://doi.org/10.3390/app10072456