Rainfall Induced Landslide Studies in Indian Himalayan Region: A Critical Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data Collection
3. Results
3.1. Main Landslide Events
3.2. Landslide Identification
3.3. Landslide Forecasting
3.4. Landslide Monitoring and Investigation
- Observing the changes of topography and cracks on the surface during the site investigation. This is a traditional monitoring technique used by geologists at regular time periods. The major limitation of using such a technique is that it does not provide the variations for a short time interval and it is difficult to accurately determine the time and location of future landslide incidences.
- Remote sensing techniques such as satellite imagery analysis, GPS synthetic aperture radar (SAR) interferometry, and light detection and ranging (LiDAR). These methods can be helpful as they can measure slope displacement over a large area independent of the weather conditions.
- In situ ground-based observation of slope movement using various instruments (extensometers, inclinometers, and tiltmeters) and installing rain gauges to accumulate local rainfall data. For example, Dikshit et al. [54] used tilt sensors for Darjeeling Himalayas, while Falae et al. [55] used Electrical resistivity tomography (ERT) for Garhwal Himalayas.
3.5. Lake Damming Landslides
3.6. Extreme Events and Climate Change
3.7. Landslide Susceptibility
4. Discussion
5. Conclusions
- Landslide assessment (including identification, threshold estimation, and monitoring of landslides). For landslide identification and mapping, focus needs to shift in three key directions:
- Use of automated approaches involving the use of computational techniques.
- Use of higher temporal resolution datasets and assessment of their reliability.
- Application of the current techniques towards other significant landslide prone Himalayan regions. In terms of rainfall threshold studies, the number of articles were less than 10 with most of the work focused on the use of statistical models to define a single threshold, and majorly the Eastern Himalayas have been covered. The thresholds developed show large differences when calculated for regional and local scale, therefore it is suggested to develop thresholds at local scale to improve the understanding of the region and help in setting up an operational landslide early warning system. In general, the thresholds are very low if compared with other literature thresholds, thus confirming the basic assumption that the India Himalaya is very susceptible to landsliding. Additional research needs to be conducted on the use of physical models, including campaigns aimed at gathering input data for more complex models; moreover, efforts need to be made on the combination of empirical and physical models for a better understanding of landslide initiation.
- Landslide monitoring has been performed using both ground instrumentation and satellite data, however a general multi-scale approach that extensively covers the whole region is missing.
- The focus needs to shift on include climatic factors for landslide assessment as climate change is unequivocal. The use of climate models needs to be conducted with caution, especially when downscale projections are considered. As the climatic conditions are quite varied from west to east, focus should also be on the use of appropriate down-scaling models.
- The studies on landslide susceptibility was found to have a regional bias and more research needs to be conducted in the Jammu and Kashmir Himalayas and the northeastern belt. Emphasis has primarily been on specific states and regions such as Uttarakhand, Darjeeling, and some areas of Himachal Pradesh. In modeling aspects, the use of computational approaches needs to be emphasized as it has proved to be better than traditional methods. The analysis should start focusing on the use of hybrid models and big data analytics for regional to site specific analysis, thereby understanding the heterogeneity and uncertainty of the region.
- There is a serious lack of ground-based rainfall data in large parts of the Himalayan region which has been highlighted by several works. A solution to this flaw is to start using remote sensing data (e.g., satellite radar rainfall estimates) to compare and find the best dataset to be used for individual sections in the Himalayan region.
Author Contributions
Funding
Conflicts of Interest
References
- Froude, M.J.; Petley, D. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Dubey, C.S.; Chaudhry, M.; Sharma, B.K.; Pandey, A.C.; Singh, B. Visualization of 3-D digital elevation model for landslide assessment and prediction in mountainous terrain: A case study of Chandmari landslide, Sikkim, eastern Himalayas. Geosci. J. 2005, 9, 363–373. [Google Scholar] [CrossRef]
- Kanungo, D.P.; Sharma, S. Rainfall thresholds for prediction of shallow landslides around Chamoli-Joshimath region, Garhwal Himalayas, India. Landslides 2014, 11, 629–638. [Google Scholar] [CrossRef]
- Dikshit, A.; Satyam, D.N. Estimation of rainfall thresholds for landslide occurrences in Kalimpong, India. Innov. Infrastruct. Solut. 2018, 3. [Google Scholar] [CrossRef]
- Sati, V.P. Towards Sustainable Livelihoods and Ecosystems in Mountain Regions; Springer: Berlin, Germany, 2014. [Google Scholar]
- Chakrabarti, B.K. Chapter 1—Lithotectonic Subdivisions of the Himalaya. In Geology of the Himalayan Belt; Chakrabarti, B.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–9. [Google Scholar] [CrossRef]
- Roy, A.B.; Purohit, R. Chapter 2—Indian Subcontinent: Geomorphic and Geophysical Traits. In Indian Shield; Roy, A.B., Purohit, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 13–30. [Google Scholar] [CrossRef]
- Mukhopadhyay, D.K.; Mishra, P. The Main Frontal Thrust (MFT), northwestern Himalayas: Thrust trajectory and hanging wall fold geometry from balanced cross sections. J. Geol. Soc. India 2004, 64, 739–746. [Google Scholar]
- Pradhan, B.; Singh, R.; Buchroithner, M. Estimation of stress and its use in evaluation of landslide prone regions using remote sensing data. Adv. Space Res. 2006, 37, 698–709. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Carrapa, B.; Gehrels, G.E.; Chakraborty, T.; Ghosh, P. Along-strike continuity of structure, stratigraphy, and kinematic history in the Himalayan thrust belt: The view from Northeastern India. Tectonics 2016, 35, 2995–3027. [Google Scholar] [CrossRef] [Green Version]
- Thakur, V.C. Plate tectonic interpretation of the western Himalaya. Tectonophysics 1987, 134, 91–102. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Pham, B.T.; Shirzadi, A.; Shahabi, H.; Omidvar, E.; Singh, S.K.; Sahana, M.; Asl, D.T.; Bin Ahmad, B.; Quoc, N.K.; Lee, S. Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms. Sustainability 2019, 4386. [Google Scholar] [CrossRef] [Green Version]
- Naithani, A.K.; Kumar, D.; Prasad, C. The catastrophic landslide of 16 July 2001 in Phata Byung area, Rudraprayag district, Garhwal Himalaya, India. Curr. Sci. 2002, 82, 921–923. [Google Scholar]
- Martha, T.R.; Vinod Kumar, K. September, 2012 landslide events in Okhimath, India—An assessment of landslide consequences using very high resolution satellite data. Landslides 2013, 10, 469–479. [Google Scholar] [CrossRef]
- Martha, T.R.; Roy, P.; Govindharaj, K.B.; Kumar, K.V.; Diwakar, P.G.; Dadhwal, V.K. Landslides triggered by the June 2013 extreme rainfall event in parts of Uttarakhand state, India. Landslides 2015, 12, 135–146. [Google Scholar] [CrossRef]
- Roy, P.; Martha, T.R.; Jain, N.; Kumar, K.V. Reactivation of minor scars to major landslides–a satellite-based analysis of Kotropi landslide (13 August 2017) in Himachal Pradesh, India. Curr. Sci. 2018, 115, 395. [Google Scholar] [CrossRef]
- Pradhan, S.P.; Panda, S.D.; Roul, A.R.; Thakur, M. Insights into the recent Kotropi landslide of August 2017, India: A geological investigation and slope stability analysis. Landslides 2019, 16, 1529–1537. [Google Scholar] [CrossRef]
- Kumar, V.; Gupta, V.; Jamir, I. Hazard evaluation of progressive Pawari landslide zone, Satluj valley, Himachal Pradesh, India. Nat. Hazards 2018, 93, 1029–1047. [Google Scholar] [CrossRef]
- Banerjee, A.; Dimri, A.P. Comparative analysis of two rainfall retrieval algorithms during extreme rainfall event: A case study on cloudburst, 2010 over Ladakh (Leh), Jammu and Kashmir. Nat. Hazards 2019, 97, 1357–1374. [Google Scholar] [CrossRef]
- Mondal, S.; Mandal, S. Landslide susceptibility mapping of Darjeeling Himalaya, India using index of entropy (IOE) model. Appl. Geomat. 2019, 11, 129–146. [Google Scholar] [CrossRef]
- Dikshit, A.; Satyam, N. Probabilistic rainfall thresholds in Chibo, India: Estimation and validation using monitoring system. J. Mt. Sci. 2019, 16, 870–883. [Google Scholar] [CrossRef]
- Anbarasu, K.; Sengupta, A.; Gupta, S.; Sharma, S.P. Mechanism of activation of the Lanta Khola landslide in Sikkim Himalayas. Landslides 2010, 7, 135–147. [Google Scholar] [CrossRef]
- Bera, A.; Mukhopadhyay, B.P.; Das, D. Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: A case study from Eastern Himalayas, Namchi, South Sikkim. Nat. Hazards 2019, 96, 935–959. [Google Scholar] [CrossRef]
- Umrao, R.K.; Singh, R.; Sharma, L.; Singh, T. Soil slope instability along a strategic road corridor in Meghalaya, north-eastern India. Arab. J. Geosci. 2017, 10, 260. [Google Scholar] [CrossRef]
- Sarkar, K.; Buragohain, B.; Singh, T. Rock slope stability analysis along NH-44 in Sonapur area, Jaintia hills district, Meghalaya. J. Geol. Soc. India 2016, 87, 317–322. [Google Scholar] [CrossRef]
- Sardana, S.; Verma, A.; Singh, A. Comparative analysis of rockmass characterization techniques for the stability prediction of road cut slopes along NH-44A, Mizoram, India. Bull. Eng. Geol. Environ. 2019, 78, 5977–5989. [Google Scholar] [CrossRef]
- Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Landslide Volumetric Analysis Using Cartosat-1-Derived DEMs. Ieee Geosci. Remote Sens. Lett. 2010, 7, 582–586. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslides: Investigation and mitigation. In National Research Council Transportation Research Board Special Report (Book 247); Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Vinod kumar, K.; Lakhera, R.C.; Martha, T.R.; Chatterjee, R.S.; Bhattacharya, A. Analysis of the 2003 Varunawat Landslide, Uttarkashi, India using Earth Observation data. Environ. Geol. 2008, 55, 789–799. [Google Scholar] [CrossRef]
- Martha, T.R.; Kerle, N.; van Westen, C.J.; Jetten, V.; Kumar, K.V. Object-oriented analysis of multi-temporal panchromatic images for creation of historical landslide inventories. Isprs J. Photogramm. Remote Sens. 2012, 67, 105–119. [Google Scholar] [CrossRef]
- Martha, T.R.; Kamala, P.; Jose, J.; Kumar, K.V.; Sankar, G.J. Identification of new Landslides from High Resolution Satellite Data Covering a Large Area Using Object-Based Change Detection Methods. J. Indian Soc. Remote Sens. 2016, 44, 515–524. [Google Scholar] [CrossRef]
- Amatya, P.; Kirschbaum, D.; Stanley, T. Use of Very High-Resolution Optical Data for Landslide Mapping and Susceptibility Analysis along the Karnali Highway, Nepal. Remote Sens. 2019, 11, 2284. [Google Scholar] [CrossRef] [Green Version]
- Vamsee, A.M.; Kamala, P.; Martha, T.R.; Kumar, K.V.; Amminedu, E. A tool assessing optimal multi-scale image segmentation. J. Indian Soc. Remote Sens. 2018, 46, 31–41. [Google Scholar] [CrossRef]
- Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 2010, 116, 24–36. [Google Scholar] [CrossRef]
- Martha, T.R.; van Westen, C.J.; Kerle, N.; Jetten, V.; Kumar, K.V. Landslide hazard and risk assessment using semi-automatically created landslide inventories. Geomorphology 2013, 184, 139–150. [Google Scholar] [CrossRef]
- Kumar, V.; Gupta, V.; Sundriyal, Y.P. Spatial interrelationship of landslides, litho-tectonics, and climate regime, Satluj valley, Northwest Himalaya. Geol. J. 2019, 54, 537–551. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Dikshit, A.; Sarkar, R.; Pradhan, B.; Acharya, S.; Dorji, K. Estimating rainfall thresholds for landslide occurrence in the Bhutan Himalayas. Water 2019, 11, 1616. [Google Scholar] [CrossRef] [Green Version]
- Dikshit, A.; Sarkar, R.; Pradhan, B.; Jena, R.; Drukpa, D.; Alamri, A.M. Temporal Probability Assessment and Its Use in Landslide Susceptibility Mapping for Eastern Bhutan. Water 2020, 12, 267. [Google Scholar] [CrossRef] [Green Version]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Gariano, S.L.; Sarkar, R.; Dikshit, A.; Dorji, K.; Brunetti, M.T.; Peruccacci, S.; Melillo, M. Automatic calculation of rainfall thresholds for landslide occurrence in Chukha Dzongkhag, Bhutan. Bull. Eng. Geol. Environ. 2019, 78, 4325–4332. [Google Scholar] [CrossRef]
- Sengupta, A.; Gupta, S.; Anbarasu, K. Rainfall thresholds for the initiation of landslide at Lanta Khola in north Sikkim, India. Nat. Hazards 2010, 52, 31–42. [Google Scholar] [CrossRef]
- Dikshit, A.; Sarkar, R.; Satyam, N. Probabilistic approach toward Darjeeling Himalayas landslides-A case study. Cogent Eng. 2018, 5. [Google Scholar] [CrossRef]
- Teja, T.S.; Dikshit, A.; Satyam, N. Determination of Rainfall Thresholds for Landslide Prediction Using an Algorithm-Based Approach: Case Study in the Darjeeling Himalayas, India. Geosciences 2019, 302. [Google Scholar] [CrossRef] [Green Version]
- Harilal, G.T.; Madhu, D.; Ramesh, M.V.; Pullarkatt, D. Towards establishing rainfall thresholds for a real-time landslide early warning system in Sikkim, India. Landslides 2019, 16, 2395–2408. [Google Scholar] [CrossRef]
- Gariano, S.L.; Melillo, M.; Peruccacci, S.; Brunetti, M.T. How much does the rainfall temporal resolution affect rainfall thresholds for landslide triggering? Nat. Hazards 2019, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mathew, J.; Babu, D.G.; Kundu, S.; Kumar, K.V.; Pant, C.C. Integrating intensity-duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya, India. Landslides 2014, 11, 575–588. [Google Scholar] [CrossRef]
- Kumar, A.; Asthana, A.L.; Priyanka, R.S.; Jayangondaperumal, R.; Gupta, A.K.; Bhakuni, S.S. Assessment of landslide hazards induced by extreme rainfall event in Jammu and Kashmir Himalaya, northwest India. Geomorphology 2017, 284, 72–87. [Google Scholar] [CrossRef] [Green Version]
- Caine, N. The rainfall intensity-duration control of shallow landslides and debris flows. Geogr. Ann. Ser. APhys. Geogr. 1980, 62, 23–27. [Google Scholar]
- Chae, B.-G.; Park, H.-J.; Catani, F.; Simoni, A.; Berti, M. Landslide prediction, monitoring and early warning: A concise review of state-of-the-art. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Dikshit, A.; Satyam, D.N.; Towhata, I. Early warning system using tilt sensors in Chibo, Kalimpong, Darjeeling Himalayas, India. Nat. Hazards 2018, 94, 727–741. [Google Scholar] [CrossRef]
- Falae, P.O.; Kanungo, D.P.; Chauhan, P.K.S.; Dash, R.K. Electrical resistivity tomography (ERT) based subsurface characterisation of Pakhi Landslide, Garhwal Himalayas, India. Environ. Earth Sci. 2019, 78. [Google Scholar] [CrossRef]
- Yhokha, A.; Goswami, P.K.; Chang, C.P.; Yen, J.Y.; Ching, K.E.; Aruche, K.M. Application of Persistent Scatterer Interferometry (PSI) in monitoring slope movements in Nainital, Uttarakhand Lesser Himalaya, India. J. Earth Syst. Sci. 2018, 127. [Google Scholar] [CrossRef] [Green Version]
- Martha, T.R.; Reddy, P.S.; Bhatt, C.M.; Raj, K.B.G.; Nalini, J.; Padmanabha, E.A.; Narender, B.; Kumar, K.V.; Muralikrishnan, S.; Rao, G.S.; et al. Debris volume estimation and monitoring of Phuktal river landslide-dammed lake in the Zanskar Himalayas, India using Cartosat-2 images. Landslides 2017, 14, 373–383. [Google Scholar] [CrossRef]
- Mondal, S.K.; Sastry, R.G.; Pachauri, A.K.; Gautam, P.K. High resolution 2D electrical resistivity tomography to characterize active Naitwar Bazar landslide, Garhwal Himalaya, India. Curr. Sci. 2008, 94, 871–875. [Google Scholar]
- Kannaujiya, S.; Chattoraj, S.L.; Jayalath, D.; Ray, P.K.C.; Bajaj, K.; Podali, S.; Bisht, M.P.S. Integration of satellite remote sensing and geophysical techniques (electrical resistivity tomography and ground penetrating radar) for landslide characterization at Kunjethi (Kalimath), Garhwal Himalaya, India. Nat. Hazards 2019, 97, 1191–1208. [Google Scholar] [CrossRef]
- Sharma, S.P.; Anbarasu, K.; Gupta, S.; Sengupta, A. Integrated very low-frequency EM, electrical resistivity, and geological studies on the Lanta Khola landslide, North Sikkim, India. Landslides 2010, 7, 43–53. [Google Scholar] [CrossRef]
- Raj, K.; Govindha, B.; Martha, T.R.; Kumar, K.V. A bird’s-eye view of landslide dammed lakes in Zanskar Himalaya, India. Curr. Sci. 2017, 112, 1109–1112. [Google Scholar]
- Weidinger, J.T. Case history and hazard analysis of two lake-damming landslides in the Himalayas. J. Asian Earth Sci. 1998, 16, 323–331. [Google Scholar] [CrossRef]
- Kumar, V.; Gupta, V.; Jamir, I.; Chattoraj, S.L. Evaluation of potential landslide damming: Case study of Urni landslide, Kinnaur, Satluj valley, India. Geosci. Front. 2019, 10, 753–767. [Google Scholar] [CrossRef]
- Gupta, V.; Bhasin, R.K.; Kaynia, A.M.; Kumar, V.; Saini, A.S.; Tandon, R.S.; Pabst, T. Finite element analysis of failed slope by shear strength reduction technique: A case study for Surabhi Resort Landslide, Mussoorie township, Garhwal Himalaya. Geomat. Nat. Hazards Risk 2016, 7, 1677–1690. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Sah, M. Impact of the trans-Himalayan landslide lake outburst flood (LLOF) in the Satluj catchment, Himachal Pradesh, India. Nat. Hazards 2008, 45, 379–390. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Kanungo, D. Landslide Disaster on Berinag-Munsiyari Road, Pithoragarh District, Uttarakhand. Curr. Sci. 2010, 98, 2. [Google Scholar]
- Bhan, S.; Devrani, A.; Sinha, V. An analysis of monthly rainfall and the meteorological conditions associated with cloudburst over the dry region of Leh (Ladakh), India. Mausam 2015, 66, 107–122. [Google Scholar]
- Anbalagan, R. Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng. Geol. 1992, 32, 269–277. [Google Scholar] [CrossRef]
- Gupta, P.; Anbalagan, R. Slope stability of Tehri Dam Reservoir Area, India, using landslide hazard zonation (LHZ) mapping. Q. J. Eng. Geol. 1997, 30, 27–36. [Google Scholar] [CrossRef]
- Kanungo, D.; Arora, M.; Gupta, R.; Sarkar, S. Landslide risk assessment using concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas. Landslides 2008, 5, 407–416. [Google Scholar] [CrossRef]
- Sarkar, S.; Roy, A.K.; Raha, P. Deterministic approach for susceptibility assessment of shallow debris slide in the Darjeeling Himalayas, India. Catena 2016, 142, 36–46. [Google Scholar] [CrossRef]
- Mathew, J.; Kundu, S.; Kumar, K.V.; Pant, C.C. Hydrologically complemented deterministic slope stability analysis in part of Indian Lesser Himalaya. Geomat. Nat. Hazards Risk 2016, 7, 1557–1576. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Anbalagan, R. Landslide susceptibility zonation in part of Tehri reservoir region using frequency ratio, fuzzy logic and GIS. J. Earth Syst. Sci. 2015, 124, 431–448. [Google Scholar] [CrossRef]
- Ghosh, S.; Carranza, E.J.M.; van Westen, C.J.; Jetten, V.G.; Bhattacharya, D.N. Selecting and weighting spatial predictors for empirical modeling of landslide susceptibility in the Darjeeling Himalayas (India). Geomorphology 2011, 131, 35–56. [Google Scholar] [CrossRef]
- Mandal, S.; Mandal, K. Modeling and mapping landslide susceptibility zones using GIS based multivariate binary logistic regression (LR) model in the Rorachu river basin of eastern Sikkim Himalaya, India. Modeling Earth Syst. Environ. 2018, 4, 69–88. [Google Scholar] [CrossRef]
- Mathew, J.; Jha, V.K.; Rawat, G.S. Application of binary logistic regression analysis and its validation for landslide susceptibility mapping in part of Garhwal Himalaya, India. Int. J. Remote Sens. 2007, 28, 2257–2275. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Yansari, Z.T.; Panagos, P.; Pradhan, B. Analysis and evaluation of landslide susceptibility: A review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016). Arab. J. Geosci. 2018, 11, 193. [Google Scholar] [CrossRef]
- Sharma, S.; Mahajan, A.K. A comparative assessment of information value, frequency ratio and analytical hierarchy process models for landslide susceptibility mapping of a Himalayan watershed, India. Bull. Eng. Geol. Environ. 2019, 78, 2431–2448. [Google Scholar] [CrossRef]
- Das, I.; Stein, A.; Kerle, N.; Dadhwal, V.K. Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models. Geomorphology 2012, 179, 116–125. [Google Scholar] [CrossRef]
- Mathew, J.; Jha, V.K.; Rawat, G.S. Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides 2009, 6, 17–26. [Google Scholar] [CrossRef]
- Chauhan, S.; Mukta, S.; Arora, M.K. Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides 2010, 7, 411–423. [Google Scholar] [CrossRef]
- Sahana, M.; Sajjad, H. Evaluating effectiveness of frequency ratio, fuzzy logic and logistic regression models in assessing landslide susceptibility: A case from Rudraprayag district, India. J. Mt. Sci. 2017, 14, 2150–2167. [Google Scholar] [CrossRef]
- Saha, A.K.; Gupta, R.P.; Sarkar, I.; Arora, M.K.; Csaplovics, E. An approach for GIS-based statistical landslide susceptibility zonation - with a case study in the Himalayas. Landslides 2005, 2, 61–69. [Google Scholar] [CrossRef]
- Sarkar, S.; Anbalagan, R. Landslide hazard zonation mapping and comparative analysis of hazard zonation maps. J. Mt. Sci. 2008, 5, 232–240. [Google Scholar] [CrossRef]
- Mondal, S.; Maiti, R. Integrating the Analytical Hierarchy Process (AHP) and the Frequency Ratio (FR) Model in Landslide Susceptibility Mapping of Shiv-khola Watershed, Darjeeling Himalaya. Int. J. Disaster Risk Sci. 2013, 4, 200–212. [Google Scholar] [CrossRef] [Green Version]
- Sharma, L.P.; Patel, N.; Ghose, M.K.; Debnath, P. Application of frequency ratio and likelihood ratio model for geo-spatial modelling of landslide hazard vulnerability assessment and zonation: A case study from the Sikkim Himalayas in India. Geocarto Int. 2014, 29, 128–146. [Google Scholar] [CrossRef]
- Balamurugan, G.; Ramesh, V.; Touthang, M. Landslide susceptibility zonation mapping using frequency ratio and fuzzy gamma operator models in part of NH-39, Manipur, India. Nat. Hazards 2016, 84, 465–488. [Google Scholar] [CrossRef]
- Manzo, G.; Tofani, V.; Segoni, S.; Battistini, A.; Catani, F. GIS techniques for regional-scale landslide susceptibility assessment: The Sicily (Italy) case study. Int. J. Geogr. Inf. Sci. 2013, 27, 1433–1452. [Google Scholar] [CrossRef]
- Singh, C.; Kohli, A.; Kumar, P. Comparison of results of BIS and GSI guidelines on macrolevel landslide hazard zonation—A case study along highway from Bhalukpong to Bomdila, West Kameng district, Arunachal Pradesh. J. Geol. Soc. India 2014, 83, 688–696. [Google Scholar] [CrossRef]
- Ghosh, S.; van Westen, C.J.; Carranza, E.J.M.; Ghoshal, T.B.; Sarkar, N.K.; Surendranath, M. A quantitative approach for improving the BIS (Indian) method of medium-scale landslide susceptibility. J. Geol. Soc. India 2009, 74, 625–638. [Google Scholar] [CrossRef]
- Das, I.; Stein, A.; Kerle, N.; Dadhwal, V.K. Probabilistic landslide hazard assessment using homogeneous susceptible units (HSU) along a national highway corridor in the northern Himalayas, India. Landslides 2011, 8, 293–308. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Kanungo, D.P.; Sharma, S. Landslide hazard assessment in the upper Alaknanda valley of Indian Himalayas. Geomat. Nat. Hazards Risk 2015, 6, 308–325. [Google Scholar] [CrossRef] [Green Version]
- Pham, B.T.; Bui, D.T.; Prakash, I.; Dholakia, M.B. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena 2017, 149, 52–63. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I.; Dou, J.; Singh, S.K.; Trinh, P.T.; Tran, H.T.; Le, T.M.; Phong, T.V.; Khoi, D.K.; Shirzadi, A.; et al. A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto Int. 2019. [Google Scholar] [CrossRef]
- Peethambaran, B.; Anbalagan, R.; Shihabudheen, K.V.; Goswami, A. Robustness evaluation of fuzzy expert system and extreme learning machine for geographic information system-based landslide susceptibility zonation: A case study from Indian Himalaya. Environ. Earth Sci. 2019, 78. [Google Scholar] [CrossRef]
- Ramakrishnan, D.; Singh, T.N.; Verma, A.K.; Gulati, A.; Tiwari, K.C. Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaon Himalaya, India. Nat. Hazards 2013, 65, 315–330. [Google Scholar] [CrossRef]
- Pham, B.T.; Bui, D.T.; Prakash, I.; Nguyen, L.H.; Dholakia, M.B. A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GIS. Environ. Earth Sci. 2017, 76. [Google Scholar] [CrossRef]
- Pham, B.T.; Bui, D.T.; Pourghasemi, H.R.; Indra, P.; Dholakia, M. Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: A comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theor. Appl. Climatol. 2017, 128, 255–273. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I.; Singh, S.K.; Shirzadi, A.; Shahabi, H.; Tran, T.T.G.; Buig, D.T. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. Catena 2019, 175, 203–218. [Google Scholar] [CrossRef]
- Chauhan, S.; Sharma, M.; Arora, M.K.; Gupta, N.K. Landslide Susceptibility Zonation through ratings derived from Artificial Neural Network. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 340–350. [Google Scholar] [CrossRef]
- Kumar, D.; Thakur, M.; Dubey, C.S.; Shukla, D.P. Landslide susceptibility mapping & prediction using Support Vector Machine for Mandakini River Basin, Garhwal Himalaya, India. Geomorphology 2017, 295, 115–125. [Google Scholar] [CrossRef]
- Pham, B.T.; Shirzadi, A.; Bui, D.T.; Prakash, I.; Dholakia, M. A hybrid machine learning ensemble approach based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: A case study in the Himalayan area, India. Int. J. Sediment Res. 2018, 33, 157–170. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I.; Jaafari, A.; Bui, D.T. Spatial prediction of rainfall-induced landslides using aggregating one-dependence estimators classifier. J. Indian Soc. Remote Sens. 2018, 46, 1457–1470. [Google Scholar] [CrossRef]
- Pham, B.T.; Jaafari, A.; Prakash, I.; Bui, D.T. A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling. Bull. Eng. Geol. Environ. 2019, 78, 2865–2886. [Google Scholar] [CrossRef]
- Jaafari, A.; Panahi, M.; Pham, B.T.; Shahabi, H.; Bui, D.T.; Rezaie, F.; Lee, S. Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. Catena 2019, 175, 430–445. [Google Scholar] [CrossRef]
- Kanungo, D.P.; Arora, M.K.; Sarkar, S.; Gupta, R.P. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng. Geol. 2006, 85, 347–366. [Google Scholar] [CrossRef]
- Kanungo, D.P.; Sarkar, S.; Sharma, S. Combining neural network with fuzzy, certainty factor and likelihood ratio concepts for spatial prediction of landslides. Nat. Hazards 2011, 59, 1491–1512. [Google Scholar] [CrossRef]
- Chawla, A.; Chawla, S.; Pasupuleti, S.; Rao, A.C.S.; Sarkar, K.; Dwivedi, R. Landslide Susceptibility Mapping in Darjeeling Himalayas, India. Adv. Civ. Eng. 2018. [Google Scholar] [CrossRef]
- Meena, S.R.; Mishra, B.K.; Piralilou, S.T. A Hybrid Spatial Multi-Criteria Evaluation Method for Mapping Landslide Susceptible Areas in Kullu Valley, Himalayas. Geosciences 2019, 156. [Google Scholar] [CrossRef] [Green Version]
- Tofani, V.; Bicocchi, G.; Rossi, G.; Segoni, S.; D’Ambrosio, M.; Casagli, N.; Catani, F. Soil characterization for shallow landslides modeling: A case study in the Northern Apennines (Central Italy). Landslides 2017, 14, 755–770. [Google Scholar] [CrossRef] [Green Version]
- Segoni, S.; Tofani, V.; Rosi, A.; Catani, F.; Casagli, N. Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale. Front. Earth Sci. 2018, 6, 85. [Google Scholar] [CrossRef] [Green Version]
Threshold Equation | Region | Methodologies |
---|---|---|
Chamoli, Uttarakhand | Empirical thresholds | |
NH 58, Uttarakhand | Empirical thresholds | |
Kalimpong, West Bengal | Empirical thresholds | |
Kalimpong, West Bengal | Semi-automated algorithm approach | |
Gangtok, Sikkim | Empirical thresholds | |
Sikkim | Empirical thresholds |
Models | No of landslides | No of Factors | Test Site Area/Pixel Size | AUC/Accuracy | Articles |
---|---|---|---|---|---|
ANN | 154 | 7 | 600 km2/5 m × 5 m | 0.84 | Chauhan et al. [101] |
Back propagation neural network | 63 | 6 | ~116 km2/30 m × 30 m | 0.8 | Ramakrishna et al. [97] |
SVM, Proximal SVM, L2-SVM-Modified Finite Newton | 2009 pixels | 8 | 1625 km2/30 m × 30 m | 0.807 | Kumar et al. [102] |
Multilayer Perceptron (MLP) Neural Networks | 930 | 15 | 1325.47 km2/20 m × 20 m | 0.886 | Pham et al. [94] |
sequential minimal optimization (SMO) SVM, vote feature interval (VFI), Logistic Regression (LR) | 430 | 11 | 323.82 km2/20 m × 20 m | 0.891 | Pham et al. [98] |
Functional Trees (FT), Multilayer Perceptron (MLP) Neural Networks, Naïve Bayes (NB) | 430 | 11 | 0.32 km2/20 m × 20 m | 0.850 | Pham et al. [99] |
Rotation Forest based Radial Basis Function (RFRBF) neural network | 930 | 15 | 0.13 km2/20 m × 20 m | 0.891 | Pham et al. [103] |
Aggregating One-Dependence Estimators, SVM, ANN-RBF, LR, NB | 1295 | 16 | 561 km2/30 m × 30 m | 0.968 | Pham et al. [104] |
Ensemble decision tree | 103 | 10 | 242 km2/20 m × 20 m | 0.883 | Pham et al. [13] |
Rotation Forest Ensemble Model | 103 | 10 | 242 km2/30 m × 30 m | 0.741 | Pham et al. [95] |
Hybrid Reduced Error Pruning Trees | 103 | 10 | 242 km2/30 m × 30 m | 0.989 | Pham et al. [100] |
Hybrid model of Multi Boost ensemble and SVM | 391 | 16 | 270 km2/10 m × 10 m | 0.972 | Pham et al. [105] |
Neuro-fuzzy inference system | 391 | 16 | 270 km2/30 m × 30 m | 0.95 | Jaafari et al. [106] |
Fuzzy Expert System, Extreme Learning Machine | 49 | 8 | 43 km2/15 m × 15 m | 0.844 | Peethambaran et al. [96] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dikshit, A.; Sarkar, R.; Pradhan, B.; Segoni, S.; Alamri, A.M. Rainfall Induced Landslide Studies in Indian Himalayan Region: A Critical Review. Appl. Sci. 2020, 10, 2466. https://doi.org/10.3390/app10072466
Dikshit A, Sarkar R, Pradhan B, Segoni S, Alamri AM. Rainfall Induced Landslide Studies in Indian Himalayan Region: A Critical Review. Applied Sciences. 2020; 10(7):2466. https://doi.org/10.3390/app10072466
Chicago/Turabian StyleDikshit, Abhirup, Raju Sarkar, Biswajeet Pradhan, Samuele Segoni, and Abdullah M. Alamri. 2020. "Rainfall Induced Landslide Studies in Indian Himalayan Region: A Critical Review" Applied Sciences 10, no. 7: 2466. https://doi.org/10.3390/app10072466
APA StyleDikshit, A., Sarkar, R., Pradhan, B., Segoni, S., & Alamri, A. M. (2020). Rainfall Induced Landslide Studies in Indian Himalayan Region: A Critical Review. Applied Sciences, 10(7), 2466. https://doi.org/10.3390/app10072466