Metabolic Capability of Penicillium oxalicum to Transform High Concentrations of Anti-Inflammatory and Analgesic Drugs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pharmaceutical Compound Stock Solutions and Microorganisms
2.2. Biodegradation of Individual Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)/Analgesic by Penicillium oxalicum at Flask Scale
2.3. Biodegradation of a Complex Mixture of NSAIDs/Analgesic by P. Oxalicum at Flask Scale
2.4. Biodegradation of Complex Mixture of NSAIDs/Analgesic by Penicillium oxalicum in Fluidized Bioreactor
2.5. Analytical Methods
2.6. Analysis of NSAIDs/Analgesic Effluent Toxicity in the Fluidized Bioreactor
2.7. Statistical Analysis
3. Results
3.1. Degradation of Individual Pharmaceutical Compounds by the Ascomycete P. oxalicum at Flask-Scale
3.2. Analysis of Biodegradation Rates from a Complex Mix of NSAIDs/Analgesic Drugs by Penicillium oxalicum under Increasing Glucose Concentration
3.3. Pellets of P. oxalicum Degrade a Complex Mix of NSAIDs/Analgesic in a Batch Fluidized Bioreactor with Glucose Supplementation
3.4. By-Products Obtained during the Biotransformation of the NSAIDs/Analgesic Mixture by Penicillium oxalicum
3.5. Analysis of Micro- and Phyto-Toxicity of Bioreactor Effluent Treated with Penicillium oxalicum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anastasi, A.; Tigini, V.; Varese, G.C. The Bioremediation Potential of Different Ecophysiological Groups of Fungi. In Fungi as Bioremediators; Goltapeh, E.M., Danesh, Y.R., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 29–49. [Google Scholar] [CrossRef]
- Marco-Urrea, E.; García-Romera, I.; Aranda, E. Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol. 2015, 32, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Olicón-Hernández, D.R.; González-López, J.; Aranda, E. Overview on the Biochemical Potential of Filamentous Fungi to Degrade Pharmaceutical Compounds. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Boudreau, D.M.; Freedman, A.N. Trends in the use of aspirin and nonsteroidal anti-inflammatory drugs in the general U.S. population. Pharmacoepidemiol. Drug 2014, 23, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Bowers, L.W.; Maximo, I.X.F.; Brenner, A.J.; Beeram, M.; Hursting, S.D.; Price, R.S.; Tekmal, R.R.; Jolly, C.A.; de Graffenried, L.A. NSAID Use Reduces Breast Cancer Recurrence in Overweight and Obese Women: Role of Prostaglandin–Aromatase Interactions. Cancer Res. 2014, 74, 4446–4457. [Google Scholar] [CrossRef] [Green Version]
- Vieno, N.; Sillanpää, M. Fate of diclofenac in municipal wastewater treatment plant—A review. Environ. Int. 2014, 69, 28–39. [Google Scholar] [CrossRef]
- Carere, M.; Polesello, S.; Kase, R.; Gawlik, B.M. The Emerging Contaminants in the Context of the EU Water Framework Directive. In Emerging Contaminants in River Ecosystems: Occurrence and Effects under Multiple Stress Conditions; Petrovic, M., Sabater, S., Elosegi, A., Barceló, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 197–215. [Google Scholar] [CrossRef]
- Stosic, R.; Dunagan, F.; Palmer, H.; Fowler, T.; Adams, I. Responsible self-medication: Perceived risks and benefits of over-the-counter analgesic use. Int. J. Pharm. Pract. 2011, 19, 236–245. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Chimuka, L.J. Occurrence of naproxen, ibuprofen, and diclofenac residues in wastewater and river water of KwaZulu-Natal Province in South Africa. Environ. Monit. Assess. 2017, 189, 348. [Google Scholar] [CrossRef]
- Marco-Urrea, E.; Pérez-Trujillo, M.; Cruz-Morató, C.; Caminal, G.; Vicent, T. White-rot fungus-mediated degradation of the analgesic ketoprofen and identification of intermediates by HPLC-DAD-MS and NMR. Chemosphere 2010, 78, 474–481. [Google Scholar] [CrossRef]
- Gonda, S.; Kiss-Szikszai, A.; Szűcs, Z.; Balla, B.; Vasas, G. Efficient biotransformation of non-steroid anti-inflammatory drugs by endophytic and epiphytic fungi from dried leaves of a medicinal plant, Plantago lanceolata L. Int. Biodeter. Biodegr. 2016, 108, 115–121. [Google Scholar] [CrossRef]
- Bronikowski, A.; Hagedoorn, P.-L.; Koschorreck, K.; Urlacher, V.B. Expression of a new laccase from Moniliophthora roreri at high levels in Pichia pastoris and its potential application in micropollutant degradation. AMB Express 2017, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Marco-Urrea, E.; Pérez-Trujillo, M.; Vicent, T.; Caminal, G. Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 2009, 74, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Marco-Urrea, E.; Pérez-Trujillo, M.; Blánquez, P.; Vicent, T.; Caminal, G. Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR. Bioresour. Technol. 2010, 101, 2159–2166. [Google Scholar] [CrossRef]
- Borràs, E.; Llorens-Blanch, G.; Rodríguez-Rodríguez, C.E.; Sarrà, M.; Caminal, G. Soil colonization by Trametes versicolor grown on lignocellulosic materials: Substrate selection and naproxen degradation. Int. Biodeter. Biodegr. 2011, 65, 846–852. [Google Scholar] [CrossRef]
- Rodarte-Morales, A.I.; Feijoo, G.; Moreira, M.T.; Lema, J. Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World J. Microbiol. Biotechnol. 2011, 27, 1839–1846. [Google Scholar] [CrossRef]
- Cruz-Morató, C.; Lucas, D.; Llorca, M.; Rodriguez-Mozaz, S.; Gorga, M.; Petrovic, M.; Barceló, D.; Vicent, T.; Sarrà, M.; Marco-Urrea, E. Hospital wastewater treatment by fungal bioreactor: Removal efficiency for pharmaceuticals and endocrine disruptor compounds. Sci. Total Environ. 2014, 493, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Badia-Fabregat, M.; Lucas, D.; Pereira, M.A.; Alves, M.; Pennanen, T.; Fritze, H.; Rodríguez-Mozaz, S.; Barceló, D.; Vicent, T.; Caminal, G. Continuous fungal treatment of non-sterile veterinary hospital effluent: Pharmaceuticals removal and microbial community assessment. Appl. Microbiol. Biotechnol. 2016, 100, 2401–2415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olicón-Hernández, D.R.; Camacho-Morales, R.L.; Pozo, C.; González-López, J.; Aranda, E. Evaluation of diclofenac biodegradation by the ascomycete fungus Penicillium oxalicum at flask and bench bioreactor scales. Sci. Total Environ. 2019, 662, 607–614. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Mtibaà, R.; Olicón-Hernández, D.R.; Pozo, C.; Nasri, M.; Mechichi, T.; González, J.; Aranda, E. Degradation of bisphenol A and acute toxicity reduction by different thermo-tolerant ascomycete strains isolated from arid soils. Ecotoxicol. Environ. Saf. 2018, 156, 87–96. [Google Scholar] [CrossRef]
- Zucconi, F.J.B. Evaluating toxicity of immature compost. BioCycle 1981, 22, 54–57. [Google Scholar]
- Aranda, E.; Godoy, P.; Reina, R.; Badia-Fabregat, M.; Rosell, M.; Marco-Urrea, E.; García-Romera, I. Isolation of Ascomycota fungi with capability to transform PAHs: Insights into the biodegradation mechanisms of Penicillium oxalicum. Int. Biodeter. Biodegr. 2017, 122, 141–150. [Google Scholar] [CrossRef]
- Aus der Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment—Global occurrences and perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, H.; Yargeau, V.; Cooper, D.G. Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Sci. Total Environ. 2010, 408, 1701–1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, J.; Gao, D.; Zhang, B.; Liang, H. Co-metabolic degradation of pyrene by indigenous white-rot fungus Pseudotrametes gibbosa from the northeast China. Int. Biodeter. Biodegr. 2011, 65, 600–604. [Google Scholar] [CrossRef]
- González-Abradelo, D.; Pérez-Llano, Y.; Peidro-Guzmán, H.; del Rayo Sánchez-Carbente, M.; Folch-Mallol, J.L.; Aranda, E.; Vaidyanathan, V.K.; Cabana, H.; Gunde-Cimerman, N.; Batista-García, R.A. First demonstration that the ascomycetous halophilic fungi Aspergillus sydowii and Aspergillus destruens are useful in xenobiotic mycoremediation under high salinity conditions. Bioresour. Technol. 2019, 279, 296–297. [Google Scholar] [CrossRef]
- Poraj-Kobielska, M.; Kinne, M.; Ullrich, R.; Scheibner, K.; Kayser, G.; Hammel, K.E.; Hofrichter, M. Preparation of human drug metabolites using fungal peroxygenases. Biochem. Pharm. 2011, 82, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Jelic, A.; Cruz-Morató, C.; Marco-Urrea, E.; Sarrà, M.; Perez, S.; Vicent, T.; Petrović, M.; Barcelo, D. Degradation of carbamazepine by Trametes versicolor in an air pulsed fluidized bed bioreactor and identification of intermediates. Water Res. 2012, 46, 955–964. [Google Scholar] [CrossRef]
- Cruz-Morató, C.; Ferrando-Climent, L.; Rodriguez-Mozaz, S.; Barceló, D.; Marco-Urrea, E.; Vicent, T.; Sarrà, M. Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Res. 2013, 47, 5200–5210. [Google Scholar] [CrossRef]
- Tran, N.H.; Urase, T.; Kusakabe, O. Biodegradation characteristics of pharmaceutical substances by whole fungal culture Trametes versicolor and its laccase. J. Water Environ. Technol. 2010, 8, 125–140. [Google Scholar] [CrossRef] [Green Version]
Time (h) | DFC | IBU | KET | NPX | APAP | |||||
---|---|---|---|---|---|---|---|---|---|---|
g+ | g- | g+ | g- | g+ | g- | g+ | g- | g+ | g- | |
0 | a | a | a | a | a | a | a | a | a | a |
24 | a | b | a | a | a | b | a | b | a | a |
48 | a | b | a | a | a | a | a | b | a | a |
72 | a | b | a | a | a | b | a | b | a | a |
96 | a | b | a | a | a | b | a | b | a | a |
120 | a | b | a | a | a | b | a | b | a | a |
Global Behavior | Affected | Not affected | Affected at final time of biodegradation | Affected | Not affected |
Metabolite | Molecular Formula | Retention Time (min) | m/z | Error (ppm) |
---|---|---|---|---|
ACETAMINOPHEN | ||||
3-hydroxy-acetaminophen | C8H9NO3 | 0.66 | 168.0686 | 14.9 |
DICLOFENAC | ||||
4-hydroxy-diclofenac 5-hydroxy-diclofenac | C14H11Cl2NO3 | 4.70 | 312.0213 | 6.1 |
4, 5-dihydroxy-diclofenac | C14H11Cl2NO4 | 6.85 | 328.0143 | 5.5 |
IBUPROFEN | ||||
1-oxo-ibuprofen | C13H16O3 | 5.80 | 221.1178 | −13.6 |
KETOPROFEN | ||||
2-[3-(3-hydroxybenzoyl) phenyl]-propanoic acid 2-[3-(4-hydroxybenzoyl) phenyl]-propanoic acid 2-(3-benzoyl-4-hydroxyphenyl)-propanoic acid | C16H14O4 | 1.38 | 271.0970 | −11.8 |
2-[3-(3,4-dihydroxybenzoyl) phenyl]-propaoic acid | C16H14O5 | 1.48 | 287.0919 | −9.8 |
2-[(3-hydroxy(phenyl)methyl) phenyl]-propanoic acid | C16H16O3 | 2.48 | 257.1178 | −3.1 |
NAPROXEN | ||||
1-(6-methoxynaphthalen-2-yl) ethanone | C13H12O2 | 0.84 | 201.0916 | −10.9 |
2-(6-hydroxynaphthalen-2-yl) propanoic acid | C13H12O3 | 0.55 | 217.0865 | −16.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olicón-Hernández, D.R.; Ortúzar, M.; Pozo, C.; González-López, J.; Aranda, E. Metabolic Capability of Penicillium oxalicum to Transform High Concentrations of Anti-Inflammatory and Analgesic Drugs. Appl. Sci. 2020, 10, 2479. https://doi.org/10.3390/app10072479
Olicón-Hernández DR, Ortúzar M, Pozo C, González-López J, Aranda E. Metabolic Capability of Penicillium oxalicum to Transform High Concentrations of Anti-Inflammatory and Analgesic Drugs. Applied Sciences. 2020; 10(7):2479. https://doi.org/10.3390/app10072479
Chicago/Turabian StyleOlicón-Hernández, Darío Rafael, Maite Ortúzar, Clementina Pozo, Jesús González-López, and Elisabet Aranda. 2020. "Metabolic Capability of Penicillium oxalicum to Transform High Concentrations of Anti-Inflammatory and Analgesic Drugs" Applied Sciences 10, no. 7: 2479. https://doi.org/10.3390/app10072479
APA StyleOlicón-Hernández, D. R., Ortúzar, M., Pozo, C., González-López, J., & Aranda, E. (2020). Metabolic Capability of Penicillium oxalicum to Transform High Concentrations of Anti-Inflammatory and Analgesic Drugs. Applied Sciences, 10(7), 2479. https://doi.org/10.3390/app10072479