Effect of Microwave Radiation on Regeneration of a Granulated Micelle–Clay Complex after Adsorption of Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Granulation Procedure
2.3. TBC
2.4. Filtration Experiments of TBC
2.5. Regeneration
2.6. Drying in Ovens
2.7. Characterization Techniques
3. Results
3.1. Drying of Granules
3.2. Changes in Granule Morphology upon Heating
3.3. Infrared Study
3.4. Thermogravimetric Analysis
3.5. Removal of Bacteria from Water Filtered by Saturated Granules
3.6. Filtration of Tap Water before and after Regenerations
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hwang, B.-F. Risk of specific birth defects in relation to chlorination and the amount of natural organic matter in the water supply. Am. J. Epidemiol. 2002, 156, 374–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charrois, J.W.; Boyd, J.M.; Froese, K.L.; Hrudey, S.E. Occurrence of N-nitrosamines in Alberta public drinking-water distribution systems. J. Environ. Eng. Sci. 2007, 6, 103–114. [Google Scholar] [CrossRef]
- Asami, M.; Oya, M.; Kosaka, K. A nationwide survey of NDMA in raw and drinking water in Japan. Sci. Total Environ. 2009, 407, 3540–3545. [Google Scholar] [CrossRef]
- Bond, T.; Huang, J.; Templeton, M.R.; Graham, N. Occurrence and control of nitrogenous disinfection by-products in drinking water—A review. Water Res. 2011, 45, 4341–4354. [Google Scholar] [CrossRef] [PubMed]
- Shtarker-Sasi, A.; Castro-Sowinski, S.; Matan, O.; Kagan, T.; Nir, S.; Okon, Y.; Nasser, A.M. Removal of bacteria and Cryptosporidium from water by micelle-montmorillonite complexes. Desalin. Water Treat. 2013, 51, 7672–7680. [Google Scholar] [CrossRef]
- Undabeytia, T.; Posada, R.; Nir, S.; Galindo, I.; Laiz, L.; Saiz-Jimenez, C.; Morillo, E. Removal of waterborne microorganisms by filtration using clay–polymer complexes. J. Hazard. Mater. 2014, 279, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Rakovitsky, N.; Brook, I.; Rijn, J.V.; Ryskin, M.; Mkhweli, Z.; Etkin, H.; Nir, S. Purification of greywater by a moving bed reactor followed by a filter including a granulated micelle-clay composite. Appl. Clay Sci. 2016, 132–133, 267–272. [Google Scholar] [CrossRef]
- Kalfa, A.; Rakovitsky, N.; Tavassi, M.; Ryskin, M.; Ben-Ari, J.; Etkin, H.; Shuali, U.; Nir, S. Removal of Escherichia coli and total bacteria from water by granulated micelle-clay complexes: Filter regeneration and modeling of filtration kinetics. Appl. Clay Sci. 2017, 147, 63–68. [Google Scholar] [CrossRef]
- Sukenik, A.; Viner-Mozzini, Y.; Tavassi, M.; Nir, S. Removal of cyanobacteria and cyanotoxins from lake water by composites of bentonite with micelles of the cation octadecyltrimethyl ammonium (ODTMA). Water Res. 2017, 120, 165–173. [Google Scholar] [CrossRef]
- Bozkurt-Cekmer, H.; Davidson, P. Microwaves for microbial inactivation—efficiency and inactivation kinetics. In The Microwave Processing of Foods; Elsevier: Amsterdam, The Netherlands, 2017; pp. 220–251. [Google Scholar]
- Nir, S.; Brook, I.; Anavi, Y.; Ryskin, M.; Ari, J.B.; Huterer, R.S.; Etkin, H.; Zadaka-Amir, D.; Shuali, U. Water purification from perchlorate by a micelle–clay complex: Laboratory and pilot experiments. Appl. Clay Sci. 2015, 114, 151–156. [Google Scholar] [CrossRef]
- Nir, S.; Ryskin, M. Method of Production of Granulated Micelle-Clay Complexes: Application for Removal of Organic, Inorganic Anionic Pollutants and Microorganisms from Contaminated Water. U.S. Patent 10384959, 20 August 2019. [Google Scholar]
- American Public Health Association. STANDARD Methods for the Examination of Water and Wastewater, 21st ed.; APHA: Washington, DC, USA, 2005. [Google Scholar]
- Ninago, M.D.; López, O.V.; Passaretti, M.G.; Horst, M.F.; Lassalle, V.L.; Ramos, I.C.; Santo, R.D.; Ciolino, A.E.; Villar, M.A. Mild microwave-assisted synthesis of aluminum-pillared bentonites. J. Therm. Anal. Calorim. 2017, 129, 1517–1531. [Google Scholar] [CrossRef]
- Hedley, C.; Yuan, G.; Theng, B. Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Appl. Clay Sci. 2007, 35, 180–188. [Google Scholar] [CrossRef]
- Lagaly, G.; Ogawa, M.; Dékány, I. Clay mineral-organic interactions. In Handbook of Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 309–377. [Google Scholar]
- Zadaka, D.; Polubesova, T.; Mishael, Y.; Spitzy, A.; Koehler, H.; Wakshal, E.; Rabinovitz, O.; Nir, S. Determination of release of organic cations from micelle–clay complexes and their re-adsorption in sand/clay columns. Appl. Clay Sci. 2005, 29, 282–286. [Google Scholar] [CrossRef]
- Hoyo, C.D.; Dorado, C.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J. Physico-chemical study of selected surfactant-clay mineral systems. J. Therm. Anal. Calorim. 2008, 94, 227–234. [Google Scholar] [CrossRef]
- Xi, Y.; Martens, W.; He, H.; Frost, R.L. Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium bromide. J. Therm. Anal. Calorim. 2005, 81, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ishida, H. Concentration-dependent conformation of alkyl tail in the nanoconfined space: Hexadecylamine in the silicate galleries. Langmuir 2003, 19, 2479–2484. [Google Scholar] [CrossRef]
- Radian, A.; Carmeli, M.; Zadaka-Amir, D.; Nir, S.; Wakshal, E.; Mishael, Y.G. Enhanced removal of humic acid from water by micelle-montmorillonite composites: Comparison to granulated activated carbon. Appl. Clay Sci. 2011, 54, 258–263. [Google Scholar] [CrossRef]
- Hongping, H.; Ray, F.L.; Jianxi, Z. Infrared study of HDTMA intercalated montmorillonite. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004, 60, 2853–2859. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Hu, T.; Wu, M.; Shangguan, J.; Fan, H.; Mi, J. Effect of microwave irradiation on the preparation of iron oxide/arenaceous clay sorbent for hot coal gas desulfurization. Fuel Process. Technol. 2016, 148, 35–42. [Google Scholar] [CrossRef]
- Ouellet-Plamondon, C.; Lynch, R.J.; Al-Tabbaa, A. Comparison between granular pillared, organo- and inorgano–organo-bentonites for hydrocarbon and metal ion adsorption. Appl. Clay Sci. 2012, 67–68, 91–98. [Google Scholar] [CrossRef]
- Xie, W.; Xie, R.; Pan, W.-P.; Hunter, D.; Koene, B.; Tan, L.-S.; Vaia, R. Thermal stability of quaternary phosphonium modified montmorillonites. Chem. Mater. 2002, 14, 4837–4845. [Google Scholar] [CrossRef]
- Rathnayake, S.I.; Xi, Y.; Frost, R.L.; Ayoko, G.A. Structural and thermal properties of inorganic–organic montmorillonite: Implications for their potential environmental applications. J. Colloid Interface Sci. 2015, 459, 17–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamis, Y.; Taube, A.; Mitik-Dineva, N.; Croft, R.; Crawford, R.J.; Ivanova, E.P. Specific Electromagnetic Effects of Microwave Radiation on Escherichia coli. Appl. Environ. Microbiol. 2011, 77, 3017–3022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Conventional Oven a | MW Oven | ||||||
---|---|---|---|---|---|---|---|
Time (h) | Granules (g) | Time (min) | Granules (g) | ||||
0.0 | 61.5 | 92.3 | 123.1 | 0.0 | 61.5 | 92.3 | 123.1 |
0.5 | 57.1 b | 84.7 | 111.8 | 5.0 | 41.2 b | 69.7 | 100.4 |
1.0 | 52.2 | 79.5 | 110.2 | 7.0 | 39.3 | 64.3 | 87.3 |
1.5 | 45.7 | 71.0 | 102.1 | 8.0 | - | 62.3 | 80.6 |
2.0 | 40.0 | 64.1 | 88.1 | 9.0 | - | 60.0 | 79.8 |
2.5 | - | 59.8 | 84.7 | - | - | - | - |
3.0 | - | - | 80.2 | - | - | - | - |
ODTMA Br | BDMHDA Cl | ||||||
---|---|---|---|---|---|---|---|
Time (min) | Mass g | Time (min) | Mass g | Time (min) | Mass g | Time (min) | Mass g |
0 | 78.5 | 11 | 47.6 | 0 | 78.5 | 11 | 50.1 |
2 | 74.3 | 12 | 45.0 | 2 | 74.5 | 12 | 47.1 |
4 | 69.5 | 13 | 42.5 | 4 | 70.6 | 14 | 44.7 |
6 | 63.7 | 14 | 41.1 | 6 | 64.6 | 16 | 42.9 |
8 | 57.5 | 15 | 40.7 | 8 | 58.2 | 17 | 41.5 |
10 | 50.7 | 16 | 40.2 | 10 | 52.7 | 18 | 41.0 |
Humidity [%] | Heating Time [min] | Sample Mass [g] | Temp [°C] | Remark |
---|---|---|---|---|
5 | 0 | 27.4 | 26 | |
5 | 2 | 24.3 | >100 | Material was ignited |
20 | 0 | 32.5 | 26 | |
20 | 2 | 26.6 | 88 | Material was ignited |
40 | 0 | 43.3 | 26 | |
40 | 2 | 34.3 | 85 | |
40 | 3 | 29.7 | 88 | |
40 | 4 | 26.6 | 98 |
Column ID | 37.5 (L) | 64 (L) | 78 (L) |
---|---|---|---|
TAP | 1200 a | 1400 a | 40 b |
Container | 1100 a | 3400 a | 70 b |
M1 | 9 | 12 | |
M2 | 1 | 28 | |
M3 | 835 a | 925 a | |
M4 | <1 | 1 | |
H1 | 5 | 5 | |
H2 | 1 | 363 a | |
H3 | - | 56 b | |
H4 | 2700 * | 23,000 * | |
Av of H samples | 1 | 902 a | 5856 * |
Av of M samples | 350 a | 211 a | 242 a |
Source of Sample | 9 L | 43 L | 76 L |
---|---|---|---|
TAP | 40 d | 70 d | 150 d |
Container | 40 d | 60 d | 160 d |
M1 | 10 | 22 | 1500 c |
M2 | 1 | 7 | 3 |
M3 | 880 c | 30 d | 440 c |
M4 | 1 | 30 d | 34,000 b |
H1 | 8 | 10 | 160,000 a |
H2 | 17 | 190 c | 250,000 a |
H3 | <1 | <1 | 2600 c |
Source of sample | 9 L | 31 L | 44 L |
---|---|---|---|
TAP | 5 | 690 c | 50 d |
Container | 7 | 200 c | 140 d |
M1-MW | <1 | 1100 c | 250 c |
M2-HCl | <1 | 23 | 71,000 b |
M3-MW | 13 | 980 c | 180 c |
M4-HCl | 11,000 b | 260 c | 550,000 a |
H1-MW | 8 | 11,000 b | 8,200 b |
H2-HCl | <1 | 550,000 a | 250,000 a |
H3-MW | 1 | 260c | 60 d |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaya, A.U.; Güner, S.; Ryskin, M.; Lameck, A.S.; Benitez, A.R.; Shuali, U.; Nir, S. Effect of Microwave Radiation on Regeneration of a Granulated Micelle–Clay Complex after Adsorption of Bacteria. Appl. Sci. 2020, 10, 2530. https://doi.org/10.3390/app10072530
Kaya AU, Güner S, Ryskin M, Lameck AS, Benitez AR, Shuali U, Nir S. Effect of Microwave Radiation on Regeneration of a Granulated Micelle–Clay Complex after Adsorption of Bacteria. Applied Sciences. 2020; 10(7):2530. https://doi.org/10.3390/app10072530
Chicago/Turabian StyleKaya, A. Uğur, Selahaddin Güner, Marklen Ryskin, Azaria Stephano Lameck, Ana R. Benitez, Uri Shuali, and Shlomo Nir. 2020. "Effect of Microwave Radiation on Regeneration of a Granulated Micelle–Clay Complex after Adsorption of Bacteria" Applied Sciences 10, no. 7: 2530. https://doi.org/10.3390/app10072530
APA StyleKaya, A. U., Güner, S., Ryskin, M., Lameck, A. S., Benitez, A. R., Shuali, U., & Nir, S. (2020). Effect of Microwave Radiation on Regeneration of a Granulated Micelle–Clay Complex after Adsorption of Bacteria. Applied Sciences, 10(7), 2530. https://doi.org/10.3390/app10072530