Tailoring the FeO/SiO2 Ratio in Electric Arc Furnace Slags to Minimize the Leaching of Vanadium and Chromium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.2. Metallurgical Calculations
2.3. Melting Experiments
2.3.1. Laboratory Scale
2.3.2. Pilot Plant Scale
2.4. Sample Characterization
3. Results and Discussion
3.1. Comparison of Thermodynamic Calculations and Mineralogical Investigations
3.2. Mineralogical Results of Laboratory and Pilot Scale Experiments
3.2.1. Laboratory Scale
3.2.2. Pilot Plant Scale
3.2.3. Collective Mineralogical Results
3.3. Chemical Analyses and Leaching Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aldrian, A.; Raith, J.G.; Höllen, D.; Pomberger, R. Influence of Chromium Containing Spinels in an Electric Arc Furnace Slag on the Leaching Behaviour. J. Solid Waste Technol. Manag. 2015, 41, 357–365. [Google Scholar] [CrossRef]
- Mudersbach, D.; Kuehn, M.; Geiseler, J.; Koch, K. Chromium Immobilisation in EAF-Slags from High-alloy Steelmaking: Tests at FEhS-Institute and Development of an Operational Slag Treatment Process. In Proceedings of the First Slag Valorisation Symposium; KU Leuven: Leuven, Belgium, 2009; pp. 101–110. [Google Scholar]
- Strandkvist, I.; Engström, F.; Pålsson, K.; Björkman, B. The Influence of Iron Oxide on the Chromium Leachability of EAF Slag—A Full-Scale Study At Ovako Hofors. In Proceedings of the Scanmet IV: 4th International Conference on Process Development in Iron and Steelmaking, Luleå, Sweden, 10–13 June 2012; pp. 329–338. [Google Scholar]
- Mombelli, D.; Mapelli, C.; Barella, S.; Di Cecca, C.; Le Saout, G.; Garcia-Diaz, E. The effect of chemical composition on the leaching behaviour of electric arc furnace (EAF) carbon steel slag during a standard leaching test. J. Environ. Chem. Eng. 2016, 4, 1050–1060. [Google Scholar] [CrossRef] [Green Version]
- Cabrera-Real, H.; Romero-Serrano, A.; Zeifert, B.; Hernandez-Ramirez, A.; Hallen-Lopez, M.; Cruz-Ramirez, A. Effect of MgO and CaO/SiO2 on the immobilization of chromium in synthetic slags. J. Mater. Cycles Waste Manag. 2012, 14, 317–324. [Google Scholar] [CrossRef]
- Loncnar, M.; van der Sloot, H.A.; Mladenovič, A.; Zupančič, M.; Kobal, L.; Bukovec, P. Study of the leaching behaviour of ladle slags by means of leaching tests combined with geochemical modelling and mineralogical investigations. J. Hazard. Mater. 2016, 317, 147–157. [Google Scholar] [CrossRef]
- Hobson, A.J.; Stewart, D.I.; Bray, A.W.; Mortimer, R.J.G.; Mayes, W.M.; Rogerson, M.; Burke, I.T. Mechanism of Vanadium Leaching during Surface Weathering of Basic Oxygen Furnace Steel Slag Blocks: A Microfocus X-ray Absorption Spectroscopy and Electron Microscopy Study. Environ. Sci. Technol. 2017, 51, 7823–7830. [Google Scholar] [CrossRef] [Green Version]
- van Zomeren, A.; van der Laan, S.R.; Kobesen, H.B.A.; Huijgen, W.J.J.; Comans, R.N.J. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste Manag. 2011, 31, 2236–2244. [Google Scholar] [CrossRef] [Green Version]
- Neuhold, S.; van Zomeren, A.; Dijkstra, J.J.; van der Sloot, H.A.; Drissen, P.; Algermissen, D.; Mudersbach, D.; Schüler, S.; Griessacher, T.; Raith, J.G.; et al. Investigation of Possible Leaching Control Mechanisms for Chromium and Vanadium in Electric Arc Furnace (EAF) Slags Using Combined Experimental and Modeling Approaches. Minerals 2019, 9, 525. [Google Scholar] [CrossRef] [Green Version]
- Dimitrova, S.V.; Mihailova, I.K.; Nikolov, V.S.; Mehandjiev, D.R. Adsorption capacity of modified metallurgical slags. Bulg. Chem. Commun. 2012, 44, 30–36. [Google Scholar]
- Pasetto, M.; Baldo, N. Mix design and performance analysis of asphalt concretes with electric arc furnace slag. Constr. Build. Mater. 2011, 25, 3458–3468. [Google Scholar] [CrossRef]
- Faleschini, F.; Brunelli, K.; Zanini, M.A.; Dabalà, M.; Pellegrino, C. Electric Arc Furnace Slag as Coarse Recycled Aggregate for Concrete Production. J. Sustain. Metall. 2016, 2, 44–50. [Google Scholar] [CrossRef]
- Sas, W.; Głuchowski, A.; Radziemska, M.; Dzięcioł, J.; Szymański, A. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure. Materials 2015, 8, 4857–4875. [Google Scholar] [CrossRef]
- Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft. Verordnung des Bundesministers für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft über die Pflichten bei Bau- oder Abbruchtätigkeiten, die Trennung und die Behandlung von bei Bau- oder Abbruchtätigkeiten anfallenden Abfällen, die Herstellung und das Abfallende von Recycling-Baustoffen (Recycling-Baustoffverodnung—RBV); Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft: Vienna, Austria, 2016; p. 162. [Google Scholar]
- Jellinghaus, M. Stahlerzeugung im Lichtbogenofen; 3. Auflage.; Stahleisen: Düsseldorf, Germany, 1994; ISBN 3514005028. [Google Scholar]
- Liu, Z.; Pandelaers, L.; Jones, P.T.; Blanpain, B.; Guo, M. Effect of Al2O3 and SiO2 Addition on the Viscosity of BOF Slag. In Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016; Springer International Publishing: Cham, Switzerland, 2016; pp. 439–446. [Google Scholar]
- Drissen, P. Eisenhüttenschlacken—Industrielle Gesteine; Report des FEhS-Instituts für Baustoff-Forschung e.V.: Duisburg, Germany, 2004. [Google Scholar]
- Bowen, N.L. The Evolution of Igneous Rocks; Princeton University Press: Princeton, NJ, USA, 1928; ISBN 978-0486603117. [Google Scholar]
- Tossavainen, M.; Engstrom, F.; Yang, Q.; Menad, N.; Lidstrom Larsson, M.; Bjorkman, B. Characteristics of steel slag under different cooling conditions. Waste Manag. 2007, 27, 1335–1344. [Google Scholar] [CrossRef]
- Mombelli, D.; Mapelli, C.; Barella, S.; Gruttadauria, A.; Le Saout, G.; Garcia-Diaz, E. The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability. J. Hazard. Mater. 2014, 279, 586–596. [Google Scholar] [CrossRef]
- Austrian Standards Institute. ÖNORM S 2127:2011 Grundlegende Charakterisierung von Abfallhaufen oder von festen Abfällen aus Behältnissen und Transportfahrzeugen; Austrian Standards Institute: Vienna, Austria, 2011. [Google Scholar]
- Deutsches Institut für Normung. DIN 19529 Elution von Feststoffen—Schüttelverfahren zur Untersuchung des Eluationsverhaltens von Anorganischen Stoffen mit einem Wasser/Feststoff-Verhältnis von 2 l/kg 2009, 13; Deutsches Institut für Normung: Berlin, Germany, 2019. [Google Scholar]
- Quarzwerke GmbH. Leistungserklaerung-Kennnummer 12620-2013-1 2016, 5; Quarzwerke GmbH: Frechen, Germany, 2016. [Google Scholar]
- Austrian Standards Institute. ÖNORM EN 14346:2007 Charakterisierung von Abfällen—Berechnung der Trockenmasse durch Bestimmung des Trockenrückstandes oder des Wassergehaltes 2007; Austrian Standards Institute: Vienna, Austria, 2007. [Google Scholar]
- Austrian Standards Institute. ÖNORM EN 13656:2002 Charakterisierung von Abfällen—Aufschluss mittels Mikrowellengerät mit einem Gemisch aus Fluorwasserstoffsäure (HF), Salpetersäure (HNO3) und Salzsäure (HCl) für die anschließende Bestimmung der Elemente im Abfall 2002; Austrian Standards Institute: Vienna, Austria, 2002. [Google Scholar]
- Austrian Standards Institute. ÖNORM EN 14429:2015 Charakterisierung von Abfällen—Untersuchung des Elutionsverhaltens—Einfluss des pH-Wertes auf die Elution unter Vorheriger Säure/Base-Zugabe 2015; Austrian Standards Institute: Vienna, Austria, 2015. [Google Scholar]
- Austrian Standards Institute. ÖNORM EN ISO 17294-2:2005 Wasserbeschaffenheit—Anwendung der Induktiv Gekoppelten Plasma-Massenspektrometrie (ICP-MS) 2005; Austrian Standards Institute: Vienna, Austria, 2005. [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- White, J. The Relationship of Phase Diagrams to Constitution and Microstructure in Ceramic and Ceramic-Metal System. In Refractory Materials A Series of Monographs; Academic Press: New York, NY, USA; London, UK, 1970; Volume 6, pp. 21–66. [Google Scholar]
- Qichen, F.; Ruoxin, L.; Zhuoran, L.; Hongshen, X.; Yuemin, Z. Experimental Research on Phase Transition of Al-rich Minerals in Upper Mantle of Eastern China and Its Significance. In Proceedings of the 30th International Geological Congress; VSP BV: Utrecht, The Netherlands; Tokyo, Japan, 1997; pp. 13–21. [Google Scholar]
- Steinmetz, E.; Lindenberg, H.-U. Oxidmorphologie bei Mangan- und Mangan-Silicium-Desoxidation. In Archiv für das Eisenhüttenwesen; Verlag Stahleisen GmbH: Düsseldorf, Germany, 1976; Volume 47, pp. 71–76. [Google Scholar]
- Lindvall, M.; Berg, M.; Sichen, D. The Effect of Al2O3, CaO and SiO2 on the Phase Relationship in FeO–SiO2 Based Slag with 20 Mass% Vanadium. J. Sustain. Metall. 2017, 3, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Thy, P. Spinel minerals in transitional and alkali basaltic glasses from Iceland. Contrib. Mineral. Petrol. 1983, 83, 141–149. [Google Scholar] [CrossRef]
- Irvine, T.N. Chromian Spinel as a Petrogenetic Indicator: Part 1. Theory. Can. J. Earth Sci. 1965, 2, 648–672. [Google Scholar] [CrossRef]
- Irvine, T.N. Chromian Spinel as a Petrogenetic Indicator: Part 2. Petrologic Applications. Can. J. Earth Sci. 1967, 4, 71–103. [Google Scholar] [CrossRef]
- Li, J.L.; Xu, A.J.; He, D.F.; Yang, Q.X.; Tian, N.Y. Effect of FeO on the formation of spinel phases and chromium distribution in the CaO-SiO2-MgO-Al2O3-Cr2O3 system. Int. J. Miner. Metall. Mater. 2013, 20, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Capobianco, O.; Costa, G.; Thuy, L.; Magliocco, E.; Hartog, N.; Baciocchi, R. Carbonation of stainless steel slag in the context of in situ Brownfield remediation. Miner. Eng. 2014, 59, 91–100. [Google Scholar] [CrossRef]
- Huijgen, W.J.J.; Comans, R.N.J. Carbonation of Steel Slag for CO2 Sequestration: Leaching of Products and Reaction Mechanisms. Environ. Sci. Technol. 2006, 40, 2790–2796. [Google Scholar] [CrossRef] [PubMed]
- Drissen, P. Mineralische Bindung von Spurenelementen in Stahlwerksschlacken; Report des FEhS-Instituts für Baustoff-Forschung e.V.: Duisburg, Germany, 2006. [Google Scholar]
Leached Concentrations with Distilled Water | Total Concentrations | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
[% of Total Content] | [mg/kg DM] | [mass-%] | Ratio | ||||||||
Sample | pH | Cr | V | Cr | V | Cr2O3 | V2O3 | MgO | Al2O3 | FeO/SiO2 | CaO/SiO2 |
A | 11.2 | 1.1 × 10−03 | 0.34 | 0.13 | 2.5 | 1.73 | 0.11 | 6.20 | 7.28 | 3.66 | 2.03 |
AR1 | 11.0 | 6.4 × 10−04 | 0.19 | 0.076 | 1.2 | 1.72 | 0.09 | 6.53 | 8.26 | 3.26 | 1.54 |
AR2 | 10.8 | 2.9 × 10−05 | 0.06 | 0.0024 | 0.37 | 1.20 | 0.08 | 6.45 | 7.58 | 3.35 | 1.89 |
AR3 | 10.9 | 9.0 × 10−06 | 0.07 | 0.0018 | 0.38 | 2.98 | 0.08 | 7.23 | 7.18 | 3.83 | 1.59 |
AC1 | 10.1 | 8.8 × 10−04 | 0.03 | 0.046 | 0.13 | 0.76 | 0.06 | 13.9 | 6.61 | 1.12 | 0.57 |
AC2 | 10.0 | 6.0 × 10−05 | 0.01 | 0.0043 | 0.019 | 1.03 | 0.05 | 12.6 | 6.73 | 1.21 | 0.60 |
AC3 | 10.1 | 6.7 × 10−05 | 0.01 | 0.0024 | 0.025 | 0.52 | 0.05 | 13.1 | 6.48 | 1.05 | 0.57 |
B | 11.9 | 1.5 × 10−04 | 0.02 | 0.019 | 0.12 | 1.86 | 0.11 | 3.47 | 9.58 | 3.42 | 2.38 |
BR1 | 11.5 | 1.1 × 10−04 | 0.19 | 0.013 | 1.2 | 1.81 | 0.09 | 3.79 | 8.35 | 4.71 | 2.54 |
BR2 | 11.5 | 5.7 × 10−05 | 0.17 | 0.0077 | 1.0 | 1.97 | 0.09 | 3.82 | 8.67 | 4.76 | 2.62 |
BR3 | 11.5 | 3.5 × 10−04 | 0.11 | 0.0049 | 0.65 | 0.20 | 0.09 | 3.82 | 9.24 | 4.80 | 2.65 |
BC1 | 10.7 | 2.6 × 10−04 | 0.09 | 0.026 | 0.38 | 1.45 | 0.06 | 7.13 | 7.14 | 1.24 | 0.69 |
BC2 | 10.5 | 1.3 × 10−04 | 0.04 | 0.012 | 0.15 | 1.36 | 0.06 | 8.42 | 6.80 | 1.20 | 0.65 |
BC3 | 10.4 | 9.2 × 10−05 | 0.02 | 0.0081 | 0.081 | 1.29 | 0.06 | 8.07 | 6.78 | 1.25 | 0.65 |
C | 10.8 | 2.4 × 10−05 | 0.03 | 0.0035 | 0.37 | 2.13 | 0.16 | 3.92 | 9.13 | 1.04 | 0.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neuhold, S.; Algermissen, D.; Drissen, P.; Adamczyk, B.; Presoly, P.; Sedlazeck, K.P.; Schenk, J.; Raith, J.G.; Pomberger, R.; Vollprecht, D. Tailoring the FeO/SiO2 Ratio in Electric Arc Furnace Slags to Minimize the Leaching of Vanadium and Chromium. Appl. Sci. 2020, 10, 2549. https://doi.org/10.3390/app10072549
Neuhold S, Algermissen D, Drissen P, Adamczyk B, Presoly P, Sedlazeck KP, Schenk J, Raith JG, Pomberger R, Vollprecht D. Tailoring the FeO/SiO2 Ratio in Electric Arc Furnace Slags to Minimize the Leaching of Vanadium and Chromium. Applied Sciences. 2020; 10(7):2549. https://doi.org/10.3390/app10072549
Chicago/Turabian StyleNeuhold, Simone, David Algermissen, Peter Drissen, Burkart Adamczyk, Peter Presoly, Klaus P. Sedlazeck, Johannes Schenk, Johann G. Raith, Roland Pomberger, and Daniel Vollprecht. 2020. "Tailoring the FeO/SiO2 Ratio in Electric Arc Furnace Slags to Minimize the Leaching of Vanadium and Chromium" Applied Sciences 10, no. 7: 2549. https://doi.org/10.3390/app10072549
APA StyleNeuhold, S., Algermissen, D., Drissen, P., Adamczyk, B., Presoly, P., Sedlazeck, K. P., Schenk, J., Raith, J. G., Pomberger, R., & Vollprecht, D. (2020). Tailoring the FeO/SiO2 Ratio in Electric Arc Furnace Slags to Minimize the Leaching of Vanadium and Chromium. Applied Sciences, 10(7), 2549. https://doi.org/10.3390/app10072549