Chemical and Spectroscopic Investigation of Different Soil Fractions as Affected by Soil Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Particle-Size Physical Fractionation and Determination of Organic Carbon in Fractions
2.3. Spectroscopic Analysis of Particle-Size Fractions
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effects of Treatments on the Amount of Each Soil Fraction and on their Organic Carbon Content
3.2. Effects of Treatments on the Spectroscopic Properties of Each Soil Fraction
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Salvo, L.; Hernández, J.; Ernst, O. Distribution of soil organic carbon in different size fractions, under pasture and crop rotations with conventional tillage and no-till systems. Soil Till. Res. 2010, 109, 116–122. [Google Scholar] [CrossRef]
- Von Lützow, M.; Kögel-Knabner, I.; Ekschmitt, K.; Flessa, H.; Guggenberger, G.; Matzner, E.; Marschner, B. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 2007, 39, 2183–2207. [Google Scholar] [CrossRef]
- Brunetti, G.; Mezzapesa, G.N.; Traversa, A.; Bonifacio, E.; Farrag, K.; Senesi, N.; D’Orazio, V. Characterization of clay- and silt-sized fractions and corresponding humic acids along a Terra Rossa soil profile. Clean 2016, 44, 1–10. [Google Scholar] [CrossRef]
- Von Lützow, M.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Plaza, C.; Courtier-Murias, D.; Fernández, J.M.; Polo, A.; Simpson, A.J. Physical, chemical, and biochemical mechanisms of soil organic matter stabilization under conservation tillage systems: A central role for microbes and microbial by-products in C sequestration. Soil Biol. Biochem. 2013, 57, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.; Singh, B. Organo-mineral interactions in contrasting soils under natural vegetation. Front. Environ. Sci. 2014, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Poirier, V.; Basile-Doelsch, I.; Balesdent, J.; Borschneck, D.; Whalen, J.K.; Angers, D.A. Organo-mineral interactions are more important for organic matter retention in subsoil than topsoil. Soil Syst. 2020, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Mikutta, R.; Mikutta, C.; Kalbitz, K.; Scheel, T.; Kaiser, K.; Jahn, R. Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochim. Cosmochim. Acta 2007, 71, 2569–2590. [Google Scholar] [CrossRef]
- Neuman, J. Soil organic matter maintenance in no-till and crop rotation management systems. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, W.; Deng, W.; He, X.; Yu, G. Impact of agricultural fertilization practices on organo-mineral associations in four long-term field experiments: Implications for soil C sequestration. Sci. Total Environ. 2019, 651, 591–600. [Google Scholar] [CrossRef]
- Keiluweit, M.; Bougoure, J.J.; Nico, P.S.; Pett-Ridge, J.; Weber, P.K.; Kleber, M. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Chang. 2015, 5, 588–595. [Google Scholar] [CrossRef]
- Liang, A.; Chen, S.; Zhang, X.; Chen, X. Short-term effects of tillage practices on soil organic carbon turnover assessed by δ13 C abundance in particle-size fractions of black soils from Northeast China. Sci. World J. 2014, 2014, 514183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Front. Sustain. Food Syst. 2020, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udvardi, B.; Kovács, I.J.; Kόnya, P.; Földvári, M.; Füri, J.; Budai, F.; Falus, G.; Fancsik, T.; Szabό, C.; Szalai, Z.; et al. Application of attenuated total reflectance Fourier transform infrared spectroscopy in the mineralogical study of a landslide area, Hungary. Sedimen. Geol. 2014, 313, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Cai, J.; Song, G.; Ji, J. DRIFT spectroscopic study of diagenetic organic–clay interactions in argillaceous source rocks. Spectrochim. Acta A 2015, 148, 138–145. [Google Scholar] [CrossRef]
- Renner, G.; Schmidt, T.C.; Schram, J. Characterization and quantification of microplastics by infrared spectroscopy. In Comprehensive Analytical Chemistry; Rocha-Santos, T.A.P., Duarte, A.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 75, pp. 67–118. [Google Scholar]
- Piccolo, A.; Conte, P. Advances in nuclear magnetic resonance and infrared spectroscopies of soil organic particles. In Structure and Surface Reactions of Soil Particles. Analytical and Physical Chemistry of Soil; Huang, P.M., Senesi, N., Buffle, J., Eds.; Wiley: New York, NY, USA, 1998; Volume 4, pp. 183–250. [Google Scholar]
- Soil Survey Staff, Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- De Mastro, F.; Cocozza, C.; Traversa, A.; Savy, D.; Abdelrahman, H.M.; Brunetti, G. Influence of crop rotation, tillage and fertilization on chimical and spectroscopic characteristics of humic acids. PLoS ONE 2019, 14, e0219099. [Google Scholar] [CrossRef]
- De Mastro, F.; Brunetti, G.; Traversa, A.; Cocozza, C. Effect of crop rotation, fertilization and tillage on main soil properties and its water extractable organic matter. Soil Res. 2019, 57, 365–373. [Google Scholar] [CrossRef]
- Amelung, W.; Zech, W. Minimisation of organic matter disruption during particle-size fractionation of grassland epipedons. Geoderma 1999, 92, 73–85. [Google Scholar] [CrossRef]
- Bornemann, L.; Welp, G.; Amelung, W. Particulate organic matter at the field scale: Rapid acquisition using MID-Infrared spectroscopy. Soil Sci. Am. J. 2010, 74, 1147–1156. [Google Scholar] [CrossRef]
- Kölbl, A.; Leifeld, J.; Kögel-Knabner, I.A. Comparison of two methods for the isolation of free and occluded particulate organic matter. J. Plant Nutr. Soil Sci. 2005, 168, 660–667. [Google Scholar] [CrossRef]
- Zsolnay, A. Dissolved humus in soil waters. In Humic Substances in Terrestrial Ecosystems; Piccolo, A., Ed.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 171–223. [Google Scholar]
- Plante, A.F.; Conant, R.T.; Stewart, C.E.; Paustian, K.; Six, J. Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions. Soil Sci. Soc. Am. J. 2006, 70, 287–296. [Google Scholar] [CrossRef]
- Moni, C.; Rumpel, C.; Virto, I.; Chabbi, A.; Chenu, C. Relative importance of sorption versus aggregation for organic matter storage in subsoil horizons of two contrasting soils. Eur. J. Soil Sci. 2010, 61, 958–969. [Google Scholar] [CrossRef]
- O’Brien, S.L.; Jastrow, J.D. Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands. Soil Biol. Biochem. 2013, 61, 1–13. [Google Scholar] [CrossRef]
- Watteau, F.; Villemin, G. Soil microstructures examined through transmission electron microscopy reveal soil-microorganisms interactions. Front. Environ. Sci. 2018, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.; Zhang, Y.; Zuo, Q.; Du, B.; Chen, W.; Wei, D.; Huang, Q. Contrasting response of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China. Sci. Total Environ. 2018, 635, 784–792. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Liang, B.C.; Drury, C.F.; Mackenzie, A.F.; McGill, W.B. Elucidation of the source and turnover of water soluble and microbial biomass carbon in agricultural soils. Soil Biol. Biochem. 2000, 32, 581–587. [Google Scholar] [CrossRef]
- Chenu, C.; Plante, A.F.; Puget, P. Organo-mineral relationships. In Encyclopedia of Soil Science; Lal, R., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 1227–1230. [Google Scholar]
- Zhou, Z.G.; Chen, N.; Cao, X.Y.; Chua, T.; Mao, J.D.; Mandel, R.D.; Bettis, E.A.; Thompson, M.L. Composition of clay-fraction organic matter in Holocene paleosols revealed by advanced solid-state NMR spectroscopy. Geoderma 2014, 223, 54–61. [Google Scholar] [CrossRef]
- Rita, J.C.; Gama-Rodrigues, E.F.; Gama Rodrigues, A.C.; Polidoro, J.C.; Machado, R.C.; Baligar, V.C. C and N content in density fractions of whole soil and soil size fraction under cacao agroforestry systems and natural forest in Bahia, Brazil. Environ. Manag. 2011, 48, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahman, H.; Cocozza, C.; Olk, D.C.; Ventrella, D.; Montemurro, F.; Miano, T. Changes in labile fractions of soil organic matter during the conversion to organic farming. J. Soil Sci. Plant Nutr. 2020. [Google Scholar] [CrossRef]
- Terra, F.S.; Demattê, J.A.; Rossel, R.A.V. Spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis–NIR and mid-IR reflectance data. Geoderma 2015, 255, 81–93. [Google Scholar] [CrossRef]
- Margenot, A.J.; Calderón, F.J.; Magrini, K.A.; Evans, R.J. Application of DRIFTs, 13 C NMR, and PY-MBMS to characterize the effects of soil science oxidation assays on soil organic matter composition in a Mollic Xerofluvent. Appl. Spectr. 2017, 71, 1506–1518. [Google Scholar] [CrossRef] [PubMed]
- Drewnik, M.; Skiba, M.; Szymański, W.; Żyła, M. Mineral composition vs. soil forming processes in loess soils—A case study from Krakow (Southern Poland). Catena 2014, 119, 166–173. [Google Scholar] [CrossRef]
- Viennet, J.C.; Hubert, F.; Ferrage, E.; Tertre, E.; Legout, A.; Turpault, M.P. Investigation of clay mineralogy in a temperate acidic soil of a forest using X-ray diffraction profile modeling: Beyond the HIS and HIV description. Geoderma 2015, 241, 75–86. [Google Scholar] [CrossRef]
- Liu, Y.L.; Yao, S.H.; Han, X.Z.; Zhang, B.; Banwart, S. Chapter six-soil mineralogy changes with different agricultural practices during 8-year soil development from the parent material of a Mollisol. Adv. Agron. 2017, 142, 143–179. [Google Scholar]
- Ndzana, G.M.; Huang, L.; Zhang, Z.; Zhu, J.; Liu, F.; Bhattacharyya, R. The transformation of clay minerals in the particle size fractions of two soils from different latitude in China. Catena 2019, 175, 317–328. [Google Scholar] [CrossRef]
- Jafarzadeh-Haghighi, A.H.; Shamshuddin, J.; Hamdan, J.; Zainuddin, N. Structural composition of organic matter in particle-size fractions of soils along a climo-biosequence in the Main Range of Peninsular Malaysia. Open Geosci. 2016, 8, 503–513. [Google Scholar] [CrossRef]
- Margenot, A.J.; Calderón, F.J.; Parikh, S.J. Limitations and potential of spectral subtractions in Fourier Transform Infrared Spectroscopy of soil samples. Soil Sci. Soc. Am. J. 2016, 80, 10–26. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Janik, L.J.; Raupach, M. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in soil studies. Aust. J. Soil Res. 1991, 29, 49–67. [Google Scholar] [CrossRef]
- Sposito, G. The Chemistry of Soils; Oxford University Press, Inc.: New York, NY, USA, 2008. [Google Scholar]
- Senesi, N.; D’Orazio, V.; Ricca, G. Humic acids in the first generation of EUROSOILS. Geoderma 2003, 116, 325–344. [Google Scholar] [CrossRef]
- Kaiser, K.; Zech, W. Dissolved organic matter sorption by mineral constituents of subsoil clay fractions. J. Plant Nutr. Soil Sci. 2000, 163, 531–535. [Google Scholar] [CrossRef]
- Eusterhues, K.; Rennert, T.; Knicker, H.; Kögel-Knabner, I.; Totsche, K.U.; Schwertmann, U. Fractionation of organic matter due to reaction with ferrihydrite: Co precipitation versus adsorption. Environ. Sci. Technol. 2011, 45, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S. Mineral–organic associations: Formation, properties, and relevance in soil environments. Adv. Agron. 2015, 130, 1–140. [Google Scholar]
- Fu, H.; Quan, X. Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation. Chemosphere 2006, 63, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Kleber, M.; Nico, P.S.; Plante, A.; Filley, T.; Kramer, M.; Swanston, C.; Sollins, P. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implication for modeling concepts and temperature sensitivity. Glob. Chang. Biol. 2011, 17, 1097–1107. [Google Scholar] [CrossRef] [Green Version]
- Hatton, P.J.; Kleber, M.; Zeller, B.; Moni, C.; Plante, A.F.; Townsend, K.; Gelhaye, L.; Lajtha, K.; Derrien, D. Transfer of litter-derived N to soil mineral–organic associations: Evidence from decadal 15N tracer experiments. Org. Geochem. 2012, 42, 1489–1501. [Google Scholar] [CrossRef]
- Keiluweit, M.; Bougoure, J.J.; Zeglin, L.; Myrold, D.D.; Weber, P.K.; Pett-Ridge, J.; Kleber, M.; Nico, P.S. Nano-scale investigation of the association of microbial nitrogen residues with iron (hydr)oxides in a forest soil O-horizon. Geochim. Cosmochim. Acta 2012, 95, 213–226. [Google Scholar] [CrossRef]
- Zaccone, C.; Beneduce, L.; Lotti, C.; Martino, G.; Plaza, C. DNA occurrence in organic matter fractions isolated from amended, agricultural soils. Appl. Soil Ecol. 2018, 130, 134–142. [Google Scholar] [CrossRef]
- Puget, P.; Angers, D.A.; Chenu, C. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biol. Biochem. 1999, 31, 55–63. [Google Scholar] [CrossRef]
- Gunina, A.; Kuzyakov, Y. Sugars in soil and sweets for microorganisms: Review of origin, content, composition and fate. Soil Biol. Biochem. 2015, 90, 87–100. [Google Scholar] [CrossRef]
Sample | Dry Matter (g kg−1) | |||
---|---|---|---|---|
CT | A (>250 μm) | B (250–53 μm) | C (53–20 μm) | D (<20 μm) |
0–30 cm | 6.8 ± 0.2 | 89.5 ± 12.0 | 220.2 ± 26.2 | 689.0 ± 0.9 |
30–60 cm | 3.8 ± 0.2 | 46.0 ± 0.9 | 199.0 ± 3.8 | 763.7 ± 0.9 |
60–90 cm | 2.0 ± 0.0 | 15.2 ± 0.7 | 134.7 ± 3.8 | 867.0 ± 1.9 |
CTF | ||||
0–30 cm | 8.3 ± 0.5 | 174.7 ± 17.9 | 202.5 ± 11.1 | 604.5 ± 12.0 |
30–60 cm | 4.8 ± 0.2 | 174.3± 21.2 | 203.7 ± 17.9 | 617.8 ± 6.8 |
60–90 cm | 1.8 ± 0.7 | 39.7 ± 2.4 | 135.8 ± 4.0 | 835.2 ± 3.5 |
MT | ||||
0–30 cm | 10.3 ± 2.8 | 123.2 ± 28.5 | 311.7 ± 36.3 | 557.3 ± 43.4 |
30–60 cm | 5.3 ± 0.0 | 95.2 ± 10.1 | 197.5 ± 2.6 | 722.5 ± 7.3 |
60–90 cm | 1.3 ± 0.0 | 28.8 ± 0.2 | 179.2 ± 9.7 | 826.8 ± 10.6 |
MTF | ||||
0–30 cm | 17.7 ± 2.4 | 285.5 ± 14.4 | 203.3 ± 1.4 | 500.7 ± 9.4 |
30–60 cm | 9.0 ± 2.8 | 251.5 ± 7.8 | 223.7 ± 9.9 | 534.0 ± 3.8 |
60–90 cm | 3.8 ± 0.7 | 153.5 ± 2.1 | 190.0 ± 0.9 | 716.3 ± 1.4 |
NT | ||||
0–30 cm | 5.3 ± 0.0 | 70.7 ± 3.3 | 232.7 ± 0.5 | 695.3 ± 4.2 |
30–60 cm | 4.2 ± 0.2 | 45.7 ± 2.4 | 199.2 ± 0.2 | 764.7 ± 10.4 |
60–90 cm | 1.7 ± 0.0 | 19.0 ± 3.8 | 172.0 ± 10.8 | 826.0 ± 7.1 |
NTF | ||||
0–30 cm | 8.7 ± 0.9 | 192.3 ± 2.8 | 239.0 ± 2.4 | 563.5 ± 4.5 |
30–60 cm | 4.2 ± 0.2 | 171.8 ± 8.2 | 260.0 ± 2.4 | 559.3 ± 21.7 |
60–90 cm | 6.7 ± 0.5 | 269.5 ± 4.0 | 174.0 ± 4.7 | 575.3 ± 10.4 |
Dry Matter (g kg−1) | ||||
---|---|---|---|---|
Size Fractions | A (>250 um) | B (250–53 um) | C (53–20 um) | D (<20 um) |
Depth | *** | ** | ** | *** |
Tillage | ** | ** | n.s. | ** |
Fertilization | ** | *** | n.s. | *** |
Depth | ||||
0–30 | 0.28 b (0.12) | 4.67 b (2.30) | 7.04 b (2.01) | 18.05 a (2.54) |
30–60 | 0.15 a (0.06) | 3.92 ab (2.37) | 6.41 b (0.80) | 19.81 b (2.96) |
60–90 | 0.08 a (0.05) | 2.62 a (2.94) | 4.92 a (0.68) | 23.23 c (3.15) |
Tillage | ||||
NT | 0.15 a (0.06) | 3.84 ab (2.80) | 6.38 a (1.05) | 19.92 a (3.03) |
MT | 0.23 b (0.17) | 4.68 b (2.79) | 6.52 a (2.12) | 19.28 a (3.93) |
CT | 0.13 a (0.07) | 2.69 a (2.03) | 5.47 a (1.20) | 21.88 b (3.16) |
Fertilization | ||||
No | 0.13 a (0.08) | 1.77 a (1.14) | 6.15 a (1.93) | 22.37 b (2.90) |
Yes | 0.21 b (0.14) | 5.70 b (2.18) | 6.10 a (1.12) | 18.35 a (3.02) |
Organic Carbon (mg kg−1) | |
---|---|
Depth | *** |
Tillage | n.s. |
Fertilization | n.s. |
Size | *** |
Depth (cm) | |
0–30 | 125.9 c (10.9) |
30–60 | 89.8 b (7.8) |
60–90 | 54.5 a (4.7) |
Tillage | |
NT | 94.9 a (8.2) |
MT | 81.8 a (7.1) |
CT | 93.5 a (8.1) |
Fertilization | |
No | 92.8 a (6.6) |
Yes | 87.3 a (6.2) |
Size | |
A | 7.7 a (0.8) |
B | 22.0 ab (2.2) |
C | 54.8 b (5.5) |
D | 275.7 c (27.6) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Mastro, F.; Cocozza, C.; Brunetti, G.; Traversa, A. Chemical and Spectroscopic Investigation of Different Soil Fractions as Affected by Soil Management. Appl. Sci. 2020, 10, 2571. https://doi.org/10.3390/app10072571
De Mastro F, Cocozza C, Brunetti G, Traversa A. Chemical and Spectroscopic Investigation of Different Soil Fractions as Affected by Soil Management. Applied Sciences. 2020; 10(7):2571. https://doi.org/10.3390/app10072571
Chicago/Turabian StyleDe Mastro, Francesco, Claudio Cocozza, Gennaro Brunetti, and Andreina Traversa. 2020. "Chemical and Spectroscopic Investigation of Different Soil Fractions as Affected by Soil Management" Applied Sciences 10, no. 7: 2571. https://doi.org/10.3390/app10072571
APA StyleDe Mastro, F., Cocozza, C., Brunetti, G., & Traversa, A. (2020). Chemical and Spectroscopic Investigation of Different Soil Fractions as Affected by Soil Management. Applied Sciences, 10(7), 2571. https://doi.org/10.3390/app10072571