Post-Tuberculosis (TB) Treatment: The Role of Surgery and Rehabilitation
Abstract
:1. Introduction
2. Materials and Methods
- 1)
- ‘Surgery’, described through observational studies and reviews, systematic reviews, and meta-analyses, IPD (individual data meta-analyses) and official guidelines (GRADE or not GRADE-based). Due to the scant evidence on thoracoplasty and other less frequent surgical procedures, we concentrated on lung resection.
- 2)
- Post-TB treatment lung functional evaluations.
- 3)
- Pulmonary rehabilitation interventions.
3. Surgery and TB
3.1. Observational Studies and Reviews
3.2. Traditional Meta-analyses
3.3. Evaluating the Role of Surgery Through IPD
3.4. World Health Organization (WHO), International Union Against Tuberculosis and Lung Disease (The UNION), and ATS/CDC/ERS/IDSA (American Thoracic Society/Centers for Disease Control and prevention/European Respiratory Society/Infectious Diseases Society of America) guidelines
- Bilateral, extensive cavities;
- Impaired pulmonary function (forced expiratory volume in one second FEV1 (forced expiratory volume in 1 s) <1.5 L for lobectomy and < 2.0 L for pneumonectomy);
- Pulmonary-heart failure III–IV (New York Hart Association functional classification);
- Body mass index (BMI) up to 40%–50% of normality;
- Severe co-morbid conditions (uncontrolled diabetes, ulcer exacerbation, and liver/renal insufficiency);
- Active bronchial TB.
3.5. Priorities for Research
4. Post-TB Treatment Sequelae and Rehabilitation
4.1. Post-TB Treatment Functional Evaluation
4.2. Pulmonary Rehabilitation
4.2.1. LTOT and Ventilation
4.2.2. Physiotherapy
4.2.3. Exercise Training
4.2.4. Education and Psychological Counselling
4.3. Effectiveness of Pulmonary Rehabilitation in TB
4.4. Priorities for Research
- a)
- Patients’ characteristics (age, sex, ethnicity, etc);
- b)
- c)
- The physiopathological status, spirometry with response to bronchodilator, assessment of lung volumes through plethysmography, DLCO, arterial blood gas analysis, 6MWT, radiological evaluation—ideally a computerized tomography (CT) scan, a QoL evaluation with both general and a specific tools (St. George’s questionnaire);
- d)
- Rationale and design of the pulmonary rehabilitation plan, with a pre-/post-test comparison;
- e)
- Cost-assessment and evaluation of programmatic feasibility [59].
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lönnroth, K.; Migliori, G.B.; Abubakar, I.; D’Ambrosio, L.; de Vries, G.; Diel, R.; Douglas, P.; Falzon, D.; Gaudreau, M.A.; Goletti, D.; et al. Towards tuberculosis elimination: An action framework for low-incidence countries. Eur. Respir. J. 2015, 45, 928–952. [Google Scholar] [CrossRef] [Green Version]
- Migliori, G.B.; Tiber, I.S.; Zumla, A.; Petersen, E.; Chakaya, J.M.; Wejse, C.; Muñoz Torrico, M.; Duarte, R.; Alffenaar, J.W.; Members of the Global Tuberculosis Network; et al. MDR/XDR-TB management of patients and contacts: Challenges facing the new decade. The 2020 clinical update by the Global Tuberculosis Network. Int. J. Infect. Dis. 2020, S1201-9712(20)30045-X. [Google Scholar] [CrossRef] [Green Version]
- Lange, C.; Aarnoutse, R.E.; Alffenaar, J.W.C.; Bothamley, G.; Brinkmann, F.; Costa, J.; Chesov, D.; van Crevel, R.; Dedicoat, M.; Dominguez, J.; et al. Management of patients with multidrug-resistant tuberculosis. Int. J. Tuberc. Lung. Dis. 2019, 23, 645–662. [Google Scholar] [CrossRef] [PubMed]
- Pontali, E.; Tadolini, M.; Migliori, G.B. TB consilia and quality of tuberculosis management. Int. J. Tuberc. Lung. Dis. 2019, 23, 1048–1049. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report 2019; WHO/CDS/TB/2019.15; World Health Organization: Geneva, Switzerland, 2019; Available online: https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1 (accessed on 26 February 2020).
- Borisov, S.E.; Dheda, K.; Enwerem, M.; Romero Leyet, R.; D’Ambrosio, L.; Centis, R.; Sotgiu, G.; Tiberi, S.; Alffenaar, J.W.; Maryandyshev, A.; et al. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: A multicentre study. Eur. Respir. J. 2017, 49, 1700387. [Google Scholar] [CrossRef] [Green Version]
- Akkerman, O.; Aleksa, A.; Alffenaar, J.W.; Al-Marzouqi, N.H.; Arias-Guillén, M.; Belilovski, E.; Bernal, E.; Boeree, M.J.; Borisov, S.E.; Bruchfeld, J.; et al. Members of the International Study Group on new anti-tuberculosis drugs and adverse events monitoring. Surveillance of adverse events in the treatment of drug-resistant tuberculosis: A global feasibility study. Int. J. Infect. Dis. 2019, 83, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Borisov, S.; Danila, E.; Maryandyshev, A.; Dalcolmo, M.; Miliauskas, S.; Kuksa, L.; Manga, S.; Skrahina, A.; Diktanas, S.; Codecasa, L.R.; et al. Surveillance of adverse events in the treatment of drug-resistant tuberculosis: First global report. Eur. Respir. J. 2019, 54, 1901522. [Google Scholar] [CrossRef]
- Pontali, E.; Raviglione, M.C.; Migliori, G.B.; writing group members of the Global TB Network Clinical Trials Committee. Regimens to treat multidrug-resistant tuberculosis: Past, present and future perspectives. Eur. Respir. Rev. 2019, 28, 190035. [Google Scholar] [CrossRef] [Green Version]
- Pontali, E.; Sotgiu, G.; Tiberi, S.; Tadolini, M.; Visca, D.; D’Ambrosio, L.; Centis, R.; Spanevello, A.; Migliori, G.B. Combined treatment of drug-resistant tuberculosis with bedaquiline and delamanid: A systematic review. Eur. Respir. J. 2018, 52, 1800934. [Google Scholar] [CrossRef] [Green Version]
- Pontali, E.; D’Ambrosio, L.; Centis, R.; Sotgiu, G.; Migliori, G.B. Multidrug-resistant tuberculosis and beyond: An updated analysis of the current evidence on bedaquiline. Eur. Respir. J. 2017, 49, 1700146. [Google Scholar] [CrossRef] [Green Version]
- Pontali, E.; Sotgiu, G.; D’Ambrosio, L.; Centis, R.; Migliori, G.B. Bedaquiline and MDR-TB: A systematic and critical analysis of the evidence. Eur. Respir. J. 2016, 47, 394–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migliori, G.B.; Nardell, E.; Yedilbayev, A.; D’Ambrosio, L.; Centis, R.; Tadolini, M.; van den Boom, M.; Ehsani, S.; Sotgiu, G.; Dara, M. Reducing tuberculosis transmission: A consensus document from the World Health Organization Regional Office for Europe. Eur. Respir. J. 2019, 53, 1900391. [Google Scholar] [CrossRef] [PubMed]
- Akkerman, O.W.; Ter Beek, L.; Centis, R.; Maeurer, M.; Visca, D.; Muñoz-Torrico, M.; Tiberi, S.; Migliori, G.B. Rehabilitation, optimized nutritional care, and boosting host internal milieu to improve long-term treatment outcomes in tuberculosis patients. Int. J. Infect. Dis. 2020, S1201-9712(20)30031-X. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, E.D.; Iseman, M.D. Surgery for MDR-TB? Int. J. Tuberc. Lung. Dis. 2013, 17, 710. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.D.; Laurel, V.; Strand, M.J.; Chan, J.F.; Huynh, M.L.; Goble, M.; Iseman, M.D. Treatment and outcome analysis of 205 patients with multidrug-resistant tuberculosis. Am. J. Respir. Crit. Care Med. 2004, 169, 1103–1109. [Google Scholar] [CrossRef]
- Iseman, M. Treatment of multidrug-resistant tuberculosis. N. Engl. J. Med. 1993, 329, 784. [Google Scholar]
- Iseman, M.D.; Madsen, L.; Goble, M.; Pomerantz, M. Surgical intervention in the treatment of pulmonary disease caused by drug resistant Mycobacterium tuberculosis. Am. Rev. Respir. Dis. 1990, 141, 623. [Google Scholar] [CrossRef]
- Dara, M.; Sotgiu, G.; Zaleskis, R.; Migliori, G.B. Untreatable tuberculosis: Is surgery the answer? Eur. Respir. J. 2015, 45, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Borisov, S.E.; D’Ambrosio, L.; Centis, R.; Tiberi, S.; Dheda, K.; Alffenaar, J.W.; Amale, R.; Belilowski, E.; Bruchfeld, J.; Canneto, B.; et al. Outcomes of patients with drug-resistant-tuberculosis treated with bedaquiline-containing regimens and undergoing adjunctive surgery. J. Infect. 2019, 78, 35–39. [Google Scholar] [CrossRef]
- Tiberi, S.; Torrico, M.M.; Rahman, A.; Krutikov, M.; Visca, D.; Silva, D.R.; Kunst, H.; Migliori, G.B. Managing severe tuberculosis and its sequelae: From intensive care to surgery and rehabilitation. J. Bras. Pneumol. 2019, 45, e20180324. [Google Scholar] [CrossRef]
- Calligaro, G.L.; Moodley, L.; Symons, G.; Dheda, K. The medical and surgical treatment of drug-resistant tuberculosis. J. Thorac. Dis. 2014, 6, 186–195. [Google Scholar] [PubMed]
- Subotic, D.; Yablonskiy, P.; Sulis, G.; Cordos, I.; Petrov, D.; Centis, R.; D’Ambrosio, L.; Sotgiu, G.; Migliori, G.B. Surgery and pleuro-pulmonary tuberculosis: A scientific literature review. J. Thorac. Dis. 2016, 8, E474–E485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayir, F.; Ocakcioglu, I.; Şehitoğulları, A.; Çobanoğlu, U. Clinical analysis of pneumonectomy for destroyed lung: A retrospective study of 32 patients. Gen. Thorac. Cardiovasc. Surg. 2019, 67, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Yablonskii, P.K.; Kudriashov, G.G.; Avetisyan, A.O. Surgical Resection in the Treatment of Pulmonary Tuberculosis. Thorac. Surg. Clin. 2019, 29, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhong, F.M.; Xu, X.D.; Yu, G.C.; Zhu, P.F. Efficacy of regional arterial embolization before pleuropulmonary resection in 32 patients with tuberculosis-destroyed lung. Bmc. Pulm. Med. 2018, 18, 156. [Google Scholar] [CrossRef]
- Giller, D.B.; Giller, B.D.; Giller, G.V.; Shcherbakova, G.V.; Bizhanov, A.B.; Enilenis, I.I.; Glotov, A.A. Treatment of pulmonary tuberculosis: Past and present. Eur. J. Cardiothorac. Surg. 2018, 53, 967–972. [Google Scholar] [CrossRef]
- Marrone, M.T.; Venkataramanan, V.; Goodman, M.; Hill, A.C.; Jereb, J.A.; Mase, S.R. Surgical interventions for drug-resistant tuberculosis: A systematic review and metaanalysis. Int. J. Tuberc. Lung. Dis. 2013, 17, 6–16. [Google Scholar] [CrossRef]
- Xu, H.B.; Jiang, R.H.; Li, L. Pulmonary resection for patients with multidrug-resistant tuberculosis: Systematic review and meta-analysis. J. Antimicrob. Chemother. 2011, 66, 1687–1695. [Google Scholar] [CrossRef]
- Johnston, J.C.; Shahidi, N.C.; Sadatsafavi, M.; Fitzgerald, J.M. Treatment outcomes of multidrug-resistant tuberculosis: A systematic review and meta-analysis. PLoS ONE 2009, 4, e6914. [Google Scholar] [CrossRef] [Green Version]
- Orenstein, E.W.; Basu, S.; Shah, N.S.; Andrews, J.R.; Friedland, G.H.; Moll, A.P.; Gandhi, N.R.; Galvani, A.P. Treatment outcomes among patients with multidrug-resistant tuberculosis: Systematic review and meta-analysis. Lancet. Infect. Dis. 2009, 9, 153–161. [Google Scholar] [CrossRef]
- Hannink, G.; Gooszen, H.G.; van Laarhoven, C.J.; Rovers, M.M. A systematic review of individual patient data meta-analyses on surgical interventions. Syst. Rev. 2013, 2, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collaborative Group for the Meta-Analysis of Individual Patient Data in MDR-TB treatment–2017; Ahmad, N.; Ahuja, S.D.; Akkerman, O.W.; Alffenaar, J.C.; Anderson, L.F.; Baghaei, P.; Bang, D.; Barry, P.M.; Bastos, M.L.; et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: An individual patient data meta-analysis. Lancet 2018, 392, 821–834. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.R.; Falzon, D.; Mirzayev, F.; Jaramillo, E.; Migliori, G.B.; Mitnick, C.D.; Ndjeka, N.; Menzies, D. Improving Quality of Patient Data for Treatment of Multidrug- or Rifampin-Resistant Tuberculosis. Emerg. Infect. Dis. 2020, 26, 2020. [Google Scholar] [CrossRef] [PubMed]
- Fox, G.J.; Mitnick, C.D.; Benedetti, A.; Chan, E.D.; Becerra, M.; Chiang, C.Y.; Keshavjee, S.; Koh, W.J.; Shiraishi, Y.; Viiklepp, P.; et al. Surgery as an Adjunctive Treatment for Multidrug-Resistant Tuberculosis: An Individual Patient Data Metaanalysis. Clin. Infect. Dis. 2016, 62, 887–895. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Consolidated Guidelines on Drug-Resistant Tuberculosis Treatment; WHO/CDS/TB/2019.7; World Health Organization: Geneva, Switzerland, 2019; Available online: https://apps.who.int/iris/bitstream/handle/10665/311389/9789241550529-eng.pdf?ua=1 (accessed on 26 February 2020).
- World Health Organization Regional Office for Europe. The Role of Surgery in the Treatment of Pulmonary TB and Multidrug and Extensively Drug-Resistant TB; WHO Regional Office for Europe: Copenhagen, Denmark, 2014; Available online: http://www.euro.who.int/__data/assets/pdf_file/0005/259691/The-role-of-surgery-in-the-treatment-of-pulmonary-TB-and-multidrug-and-extensively-drug-resistant-TB.pdf?ua=1 (accessed on 26 February 2020).
- Caminero, J.A. (Ed.) Guidelines for Clinical and Operational Management of Drug-Resistant Tuberculosis; International Union Against Tuberculosis and Lung Disease: Paris, France, 2013; pp. 1–232. [Google Scholar]
- Nahid, P.; Mase, S.R.; Migliori, G.B.; Sotgiu, G.; Bothamley, G.H.; Brozek, J.L.; Cattamanchi, A.; Cegielski, J.P.; Chen, L.; Daley, C.L.; et al. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am. J. Respir. Crit. Care. Med. 2019, 200, e93–e142. [Google Scholar] [CrossRef]
- Marfina, G.Y.; Vladimirov, K.B.; Avetisian, A.O.; Starshinova, A.A.; Kudriashov, G.G.; Sokolovich, E.G.; Yablonskii, P.K. Bilateral cavitary multidrug- or extensively drug-resistant tuberculosis: Role of surgery. Eur. J. Cardiothorac. Surg. 2018, 53, 618–624. [Google Scholar] [CrossRef]
- Pasipanodya, J.G.; Miller, T.L.; Vecino, M.; Munguia, G.; Garmon, R.; Bae, S.; Drewyer, G.; Weis, S.E. Pulmonary impairment after tuberculosis. Chest 2007, 131, 1817–1824. [Google Scholar] [CrossRef]
- Hnizdo, E.; Singh, T.; Churchyard, G. Chronic pulmonary function impairment caused by initial and recurrent pulmonary tuberculosis following treatment. Thorax 2000, 55, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Torrico, M.; Cid-Juárez, S.; Galicia-Amor, S.; Troosters, T.; Spanevello, A. Sequelae Assessment and Rehabilitation. In Tuberculosis (ERSMonograph); Migliori, G.B., Bothamley, G., Duarte, R., Rendon, A., Eds.; European Respiratory Society: Sheffield, UK, 2018; pp. 326–342. [Google Scholar] [CrossRef]
- Muñoz-Torrico, M.; Rendon, A.; Centis, R.; D’Ambrosio, L.; Fuentes, Z.; Torres-Duque, C.; Mello, F.; Dalcolmo, M.; Pérez-Padilla, R.; Spanevello, A.; et al. Is there a rationale for pulmonary rehabilitation following successful chemotherapy for tuberculosis? J. Bras. Pneumol. 2016, 42, 374–385. [Google Scholar] [CrossRef] [Green Version]
- Visca, D.; Zampogna, E.; Sotgiu, G.; Centis, R.; Saderi, L.; D’Ambrosio, L.; Pegoraro, V.; Pignatti, P.; Muňoz-Torrico, M.; Migliori, G.B.; et al. Pulmonary rehabilitation is effective in patients with tuberculosis pulmonary sequelae. Eur. Respir. J. 2019, 53, 1802184. [Google Scholar] [CrossRef]
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.; et al. ATS/ERS Task Force on Pulmonary Rehabilitation. An official American Thoracic Society/European Respiratory Society statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care. Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, T.; Ohi, M.; Chin, K.; Hirata, H.; Otsuka, N.; Kita, H.; Kuno, K. Ventilatory support during exercise in patients with pulmonary tuberculosis sequelae. Chest 1997, 112, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.F.; Alba, A.; Lee, M. Respiratory rehabilitation in severe restrictive lung disease secondary to tuberculosis. Arch. Phys. Med. Rehabil. 1984, 65, 556–558. [Google Scholar] [PubMed]
- Strelis, A.A.; Strelis, A.K.; Roskoshnykh, V.K. Vibration massage in the prevention of postresection complications and in the clinical rehabilitation of patients with pulmonary tuberculosis after surgical interventions. Probl. Tuberk. Bolezn. Legk. 2004, 11, 29–34. [Google Scholar]
- Daniels, K.J.; Irusen, E.; Pharaoh, H.; Hanekom, S. Post-tuberculosis health-related quality of life, lung function and exercise capacity in a cured pulmonary tuberculosis population in the Breede Valley District, South Africa. S. Afr. J. Physiother. 2019, 75, 1319. [Google Scholar] [CrossRef]
- Tada, A.; Matsumoto, H.; Soda, R.; Endo, S.; Kawai, H.; Kimura, G.; Yamashita, M.; Okada, C.; Takahashi, K. Effects of pulmonary rehabilitation in patients with pulmonary tuberculosis sequelae. Nihon. Kokyuki. Gakkai. Zasshi. 2002, 40, 275–281. [Google Scholar]
- Jones, R.; Kirenga, B.J.; Katagira, W.; Singh, S.J.; Pooler, J.; Okwera, A.; Kasiita, R.; Enki, D.G.; Creanor, S.; Barton, A. A pre-post intervention study of pulmonary rehabilitation for adults with post-tuberculosis lung disease in Uganda. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 3533–3539. [Google Scholar] [CrossRef] [Green Version]
- Ando, M.; Mori, A.; Esaki, H.; Shiraki, T.; Uemura, H.; Okazawa, M.; Sakakibara, H. The effect of pulmonary rehabilitation in patients with post-tuberculosis lung disorder. Chest 2003, 123, 1988–1995. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Naaraayan, A.; Acharya, P.; Menon, B.; Bansal, V.; Jesmajian, S. Pulmonary Rehabilitation in Patients with Chronic Lung Impairment from Pulmonary Tuberculosis. Cureus 2018, 10, e3664. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, N.; Yoshiyama, T.; Asai, E.; Komatsu, Y.; Sugiyama, Y.; Mineta, Y. Exercise training for the improvement of exercise performance of patients with pulmonary tuberculosis sequelae. Intern. Med. 2006, 45, 399–403. [Google Scholar] [CrossRef] [Green Version]
- Wilches, E.C.; Rivera, J.A.; Mosquera, R.; Loaiza, L.; Obando, L. Pulmonary rehabilitation in multi-drug resistant tuberculosis (TB MDR): A case report. Colomb. Med. 2009, 40, 436–441. [Google Scholar]
- Betancourt-Peña, J.; Muñoz-Erazo, B.E.; Hurtado-Gutiérrez, H. Efecto de la rehabilitación pulmonar en la calidad de vida y la capacidad funcional en pacientes con secuelas de tuberculosis [Effect of pulmonary rehabilitation in quality of life and functional capacity in patients with tuberculosis sequela]. Nova 2015, 13, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Rivera Motta, J.A.; Wilches, E.C.; Mosquera, R.P. Pulmonary rehabilitation on aerobic capacity and health-related quality of life in patients with sequelae of pulmonary TB. Am. J. Respir. Crit. Care. Med. 2016, 193, A2321. [Google Scholar] [CrossRef] [Green Version]
- Visca, D.; Centis, R.; D’Ambrosio, L.; Muñoz-Torrico, M.; Chakaya, J.M.; Tiberi, S.; Spanevello, A.; Sotgiu, G.; Migliori, G.B. Post-TB treatment pulmonary rehabilitation: Do we need more? Int. J. Tuberc. Lung. Dis. 2020, in press. [Google Scholar]
First Author, Year, Country | Reference | Type of Paper; Patients Number and MDR/XDR-TB Proportion (%) | Indications for Surgery; Type of Surgery Assessed | Timing of Surgery | Favorable Outcome (Treatment Success) | Post-operative Complications/Mortality (within 30 Days from Surgery) | Favouring Surgery |
---|---|---|---|---|---|---|---|
Sayir, 2019, Turkey | [24] | Case series; 9 pts, unspecified MDR/XDR % | Emergency: hemorrhage Elective: empyema Unspecified type of surgery | - After sputum smear negativity was achieved - After negative culture for empyema | Unspecified | Complications: unspecified Mortality: 11.1% | N/A |
Yablonskii, 2019, Russia | [25] | Review; N/A pts and MDR/XDR % | Emergency: hemorrhage, spontaneous pneumothorax Urgent: recurrent haemoptysis Elective: localized cavitary disease with persistent sputum positivity Complications of TB diseases Assessment of all types of surgery | Unspecified | Treatment success: 67%–100% | Complications: 9%–30.8% Mortality: 0–5.5% | N/A |
Borisov, 2019, Several Countries | [20] | Case series; 55 pts, 43.6% at least MDR; 56.4% XDR | Localised disease allowing for resection, failed bacteriological conversion, disease worsening Mostly lobectomy, segmentectomy, pneumonectomy | After 8 months of therapy (median); range: 5–13) | Treatment success 69.1% | Complications: 23.7% (out of 38 evaluable patients) Mortality: 0 | N/A |
Chen, 2018, China | [26] | Case series; 32 pts, 12.5% MDR | Haemoptysis (100%), continuously positive smear (28.1%), pulmonary aspergillosis (40.6%) Regional arterial embolization followed by pulmonary resection | After at least 6 months of standard therapy | Unspecified | Complications 18.75% Mortality: unspecified | N/A |
Giller, 2018, Russia | [27] | Case series; 5,599 pts, unspecified MDR/XDR % | Fibro-cavitary and cavitary pulmonary TB (58.5%), tuberculoma with destruction (18.8%), tuberculous pleural empyema (18.8%), caseous pneumonia (3.4%), intrathoracic lymph nodes (0.5%) Unspecified type of surgery | After 1-3 years of treatment (for 84% of patients) | Treatment success: 92.1%–98% | Complications 1.9% Mortality: 0.1% | N/A |
Fox, 2016, N/A | [35] | Meta-analysis; 478 pts (18 studies) 100% MDR (of whom 8.6% XDR) | Unknown indication for surgery Pneumonectomy (118 pts), partial lung resection (227 pts), unspecified (132 pts) | Unknown | Treatment success* 81% (pneumonectomy 69%; partial lung resection 90%) | Complications: unspecified Mortality: 8.4% (70% of deaths > 30 days from surgery) | Yes |
Subotic, 2016, N/A | [23] | Review; N/A pts and MDR/XDR % | Persistently positive sputum smear and/or culture despite appropriate chemotherapy, relapse, high risk of relapse based on drug resistance profile; Lobectomy, pneumonectomy, resection of tuberculoma | For infectious TB patients after at least 6–8 months of appropriate anti-TB therapy | Treatment success after surgery between 75% and 98% | Complications: 9%–26% Mortality: <5% after lung resection for TB | N/A |
Marrone, 2013, N/A | [28] | Systematic review and meta-analysis; 706 pts, 100% MDR/XDR | Standardized or non-standardized indication for surgery Unspecified type of surgery | Unspecified | Treatment success: 87% at twelve months post-surgery; more favorable outcome for XDR than for MDR | Complications: 3% short-term; 8% long-termMort ality: unspecified | Yes |
Xu, 2011, N/A | [29] | Systematic review and meta-analysis; 949 pts, 100% MDR | Unspecified indication for surgery Mainly pneumonectomy, lobectomy, segmentectomy | Unspecified | Treatment success: 84% | Complications: unspecified; Mortality: 3% | Unspecified |
NON-DISEASE SPECIFIC | |||
---|---|---|---|
Questionnaire and Items | Domains | Mode and Time of Administration | Score |
The Short Form (36) Health Survey SF-36v2 36 items |
| Self-administered 10 ± 8 min | Higher scores indicate better HRQoL The correct calculation of SF-36 requires the use of special algorithms, which are strictly controlled by a private company * |
Euroqol 5 dimensions EQ-5D// |
and additional perceived health status measured through a visual-analogue scale (VAS) | Self-administered 5/10 min. | Two scores, one for the 5 domains and another for the VAS. 5 domains score: 1– scores indicate worse HRQoL VAS score: 0–100 Higher scores indicate better HRQoL |
World Health Organization Quality of Life questionnaire WHOQOL-100 100 items |
| Self-administered if respondents have sufficient ability: otherwise, interviewer assisted/administered 30 min. | Produces scores relating to particular facets of QoL, scores relating to larger domains and a score relating to overall QoL and general health. Higher scores indicate better HRQoL * |
World Health Organization Quality of Life questionnaire WHOQOL-BREF 26 items |
| Self-administered if respondents have sufficient ability: otherwise, interviewer assisted/administered 10/15 min. | Produces a quality of life profile. It is possible to derive four domain scores. Higher scores indicate better HRQoL # |
DISEASE SPECIFIC | |||
TUBERCULOSIS | |||
Functional Assessment of Chronic Illness Therapy FACIT-TB 47 items |
| Self-administered 16.3 ± 3.1 min. | 0–180 Higher scores indicate better HRQoL |
Pulmonary Tuberculosis Scale of the System of Quality of Life Instruments for Chronic Diseases QLICD-PT 40 items |
| Self-administered Approximately 10 min. | 0–100 |
OTHER PULMONARY DISEASES | |||
Saint George Respiratory Questionnaire SGRQ(Asthma and COPD) 76 items |
| Self-administered 15/20 min. | 0–100 Higher scores indicate worse HRQoL |
Maugeri Respiratory Failure Questionnaire MRF-28(Chronic respiratory failure) 28 items |
| Self-administered 15 ± 6 min | 0–100 Higher scores indicate worse HRQoL |
Quality of Life-Bronchiectasis QOL-B(Non CF-Bronchiectasis) 37 items |
| Self-administered 4–5 min. | 0–100 Higher scores indicate better HRQoL |
Asthma Quality of Life Questionnaire AQLQ (Asthma) 32 items |
| Self-administered 4–5 min. | 1–7 Higher scores indicate better HRQoL |
Author, Year; [Ref] Country | Reference | Study Population Design Lung Function and Exercise Tests PR Duration and Setting | Outcome Measures Significantly Improved | Outcome Measures Not Significantly Improved | Gain in 6MWT or ISWT (meters/m) | ||
---|---|---|---|---|---|---|---|
LFT | Exercise Capacity and QoL | LFT | Exercise Capacity and QoL | ||||
Visca, 2019, Italy | [45] | 43 patients; Retrospective study Spirometry, BGA, 6MWT Spontaneous walking SpO2 3 weeks, inpatient | FEV1 LFEV1% FVC% PaO2 SaO2 | 6MWD m 6MWD % HR average SpO2 average (6MWT) SpO2 min (6MWT) Modified Borg dyspnoea final Modified Borg fatigue final SpO2 baseline (SW) SpO2 min (SW) | FVC L * FEV1/FVC * RV^ PaCO2 * pH ^FiO2 ^ (BGA) | HR baseline^ HR max * SpO2 baseline (6MWT) ^ Modified Borg dyspnoea baseline ^ Modified Borg fatigue baseline ^ SpO2 baseline (SW) * FiO2 ^ (6MWT, SW) | +35 m |
Tada, 2002, Japan | [51] | 37 patients Study design # Spirometry, BGA, 6MWT, Pimax, QoL 3.9 weeks, inpatient | VC L FEV1 L PaO2 Pimax | 6MWD m Dyspnoea # QoL # | -# | -# | +36 m |
Jones, 2017, Uganda | [52] | 29 patients Prospective study Spirometry (baseline only), ISWT Sit-to-Stand, BMI, Mid upper arm circumference, QoL 6 weeks, outpatient and homebased | BMI (kg/m2) Mid upper arm circumference (cm) | ISWT (m) Borg score after ISWT Sit-to-stand time (seconds) CCQ total score CCQ symptom score CCQ mental state score CCQ functional state scoreP HQ-9 total score Karnofsky score | Not specified | Not specified | +90 m |
Ando, 2003, Japan | [53] | 32 patients Prospective non randomized open trial Spirometry, BGA, 6MWT, HRQL 9 weeks, outpatient | VC L | 6MWD m TDI MRC ADL | FEV1 L * PaO2 * PaCO2 * | Not specified | +42 m |
Singh, 2018, India | [54] | 29 patients Prospective cohort study Spirometry, 6MWT, HRQL 8 weeks, inpatient | Not specified | 6MWD m CRQ | FEV1 L * FVC L * FEV1/FVC ^ | MMRC * | +38 m |
Yoshida, 2006, Japan | [55] | 10 patients Observational study Spirometry, BGA, treadmill test 6MWT 3 weeks, inpatient | Not specified | VO2 peak (Treadmill) 6MWD m | VC L ^ VC % ^ FEV1 L ^ FEV1/FVC% * MVV L * PaO2 * PaCO2 ^ pH ^ | Treadmill: VEmax L/min ^ VEmax/MVV * HRmax ^ Modified Borg dyspnoea final * Modified Borg fatigue final * 6MWT: SpO2% ^ Pulse rate ^ Modified Borg dyspnoea final * Modified Borg fatigue final * | +68 m |
Wilches, 2009, Colombia (Case report) | [56] | 1 patient § Case report Spirometry, BGA,6MWT, HRQL 32 weeks, inpatient | Not specified | Not specified | Not specified | 6MWD * HADS * SF36 * MRC * Borg dyspnoea final * | +110 m |
Betancourt-Peña, 2015, Colombia | [57] | 11 patients Quasi-experimental study Spirometry (baseline only) 6MWT BMI, HRQL 8 weeks, outpatient | Not specified | 6MWD VO2 peak (Treadmill) SGRQ HADS | BMI (kg/m2) * | SpO2 baseline ^ SpO2 final ^ 6MWT desaturation ^ MRC * | +110.2 m |
Rivera Motta, 2016, Colombia (conference abstract) | [58] | 8 patients Spirometry, 6MWT, Treadmill test QoL 8 weeks, inpatient | Not specified | VO2 peak (Treadmill) 6MWD m SF36 SGRQ | Not specified | Not specified | +63.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visca, D.; Tiberi, S.; Centis, R.; D’Ambrosio, L.; Pontali, E.; Mariani, A.W.; Zampogna, E.; van den Boom, M.; Spanevello, A.; Migliori, G.B. Post-Tuberculosis (TB) Treatment: The Role of Surgery and Rehabilitation. Appl. Sci. 2020, 10, 2734. https://doi.org/10.3390/app10082734
Visca D, Tiberi S, Centis R, D’Ambrosio L, Pontali E, Mariani AW, Zampogna E, van den Boom M, Spanevello A, Migliori GB. Post-Tuberculosis (TB) Treatment: The Role of Surgery and Rehabilitation. Applied Sciences. 2020; 10(8):2734. https://doi.org/10.3390/app10082734
Chicago/Turabian StyleVisca, Dina, Simon Tiberi, Rosella Centis, Lia D’Ambrosio, Emanuele Pontali, Alessandro Wasum Mariani, Elisabetta Zampogna, Martin van den Boom, Antonio Spanevello, and Giovanni Battista Migliori. 2020. "Post-Tuberculosis (TB) Treatment: The Role of Surgery and Rehabilitation" Applied Sciences 10, no. 8: 2734. https://doi.org/10.3390/app10082734
APA StyleVisca, D., Tiberi, S., Centis, R., D’Ambrosio, L., Pontali, E., Mariani, A. W., Zampogna, E., van den Boom, M., Spanevello, A., & Migliori, G. B. (2020). Post-Tuberculosis (TB) Treatment: The Role of Surgery and Rehabilitation. Applied Sciences, 10(8), 2734. https://doi.org/10.3390/app10082734