Application of Soundproofing Materials for Noise Reduction in Dental CAD/CAM Milling Machines
Abstract
:1. Introduction
2. Research Methodology
2.1. Investigation of Noise
2.1.1. Noise Measurement
2.1.2. Analysis of Noise Characteristics
3. Target Noise Source Setting and Prevention Technology Selection
3.1. Identifying and Analyzing the Cause of Noise
3.2. Setting the Target Noise Source and Determining the Noise Reduction Method
4. Determining the Best Soundproofing Materials
4.1. Performance Evaluation of Soundproofing Materials
4.2. Determining the Best Soundproofing Materials
5. Application and Results of the Noise Reduction Method
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bali, N.; Acharya, S.; Anup, N. An assessment of the effect of sound produced in a dental clinic on the hearing of dentists. Oral Health Prev. Dent. 2007, 5, 187–191. [Google Scholar] [PubMed]
- Elmehdi, H.M. Assessing acoustic noise levels in dental clinics and its link to dental anxiety and fear among UAE population. Compress. Air 2010, 87, 14. [Google Scholar]
- Rasmussen, J.A.; McLean, J.M.; Stasiak, R.S. Sound levels in emergency medical service. J. Environ. Health 1983, 45, 176–178. [Google Scholar] [PubMed]
- Cabrera, I.N.; Lee, M.H. Reducing noise pollution in the hospital setting by establishing a department of sound: A survey of recent research on the effects of noise and music in health care. Prev. Med. 2000, 30, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Lawson, N.; Thompson, K.; Saunders, G.; Saiz, J.; Richardson, J.; Brown, D.; Pope, D. Sound intensity and noise evaluation in a critical care unit. Am. J. Crit. Care 2010, 19, e88–e98. [Google Scholar] [CrossRef] [PubMed]
- Beuer, F.; Schweiger, J.; Edelhoff, D. Digital dentistry: An overview of recent developments for CAD/CAM generated restorations. Br. Dent. J. 2008, 204, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Song, E.-S.; Lim, Y.-J.; Kim, B. A user-specific approach for comfortable application of advanced 3D CAD/CAM technique in dental environments using the harmonic series noise model. Appl. Sci. 2019, 9, 4307. [Google Scholar] [CrossRef] [Green Version]
- George, N.V.; Panda, G. Advances in active noise control: A survey, with emphasis on recent nonlinear techniques. Signal Process 2013, 93, 363–377. [Google Scholar] [CrossRef]
- Lee, J.K.; Kim, J.; Rhee, C.J.; Jo, C.H.; Choi, S.B. Noise reduction of passive and active hybrid panels. Smart Mater. Struct. 2002, 11, 940–946. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.M. Noise source and transmission path identification via state-space system identification. Control Eng. Pract. 1990, 5, 1243–1251. [Google Scholar] [CrossRef]
- Song, E.-S.; Lim, Y.-J.; Kim, B.; Mun, J.S. Noise reduction using active vibration control methods in CAD/CAM dental milling machines. Appl. Sci. 2019, 9, 1516. [Google Scholar] [CrossRef] [Green Version]
- Fries, J.F.; Koop, C.E.; Beadle, C.E.; Cooper, P.P.; England, M.J.; Greaves, R.F. Reducing health care costs by reducing the need and demand for medical services. N. Engl. J. Med. 1993, 329, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Pariser, S.F. How to preserve your own well-being in a challenging medical environment. Curr. Psychiatr. 2017, 16, 35–36. [Google Scholar]
- Radman, M.; Eshghi, K. A multi-service Healthcare Network Design with Patients’ Choice to Exchange between Services. In Proceedings of the 2nd International Conference on Artificial Intelligence and Industrial Engineering (AIIE 2016), Beijing, China, 20–21 November 2016; Sehiemy, R.E., Reaz, M.B.I., Lee, C.J., Eds.; Atlantis Press: Paris, France, 2016. [Google Scholar]
- Yarar, O.; Temizsoy, E.; Günay, O. Noise pollution level in a pediatric hospital. Int. J. Environ. Sci. Technol. 2019, 16, 5107–5112. [Google Scholar] [CrossRef]
- Mazur, K.; Wrona, S.; Pawelczyk, M. Active noise control for a washing machine. Appl. Acoust. 2019, 146, 89–95. [Google Scholar] [CrossRef]
- Yerges, L.F. Sound, Noise, and Vibration Control, 2nd ed.; Van Nostrand Reinhold: New York, NY, USA, 1978. [Google Scholar]
- Brooks, L.A.; Zander, A.C.; Hansen, C.H. Investigation into the feasibility of using a parametric array control source in an active noise control system. In Proceedings of the Acoustics 2005, Busselton, Australia, 9–11 November 2005. [Google Scholar]
- Su, W.; Qian, X.M.; Li, X.Y.; Liu, S.S. Influence of Thickness and Density of Nonwoven Sound-Absorbing Material on the Sound-Absorption Capability; Trans Tech Publications Ltd.: Baech, Switzerland, 2011; Volume 197, pp. 440–443. [Google Scholar]
- Hassan, N.N.M.; Rus, A.Z.M. (2013). Influences of thickness and fabric for sound absorption of biopolymer composite. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Baech, Switzerland, 2013; Volume 393, pp. 102–107. [Google Scholar]
- Seddeq, H.S. Factors influencing acoustic performance of sound absorptive materials. Aust. J. Basic Appl. Sci. 2019, 3, 4610–4617. [Google Scholar]
- Hong, K.; Bolton, J.S. The effect of sample edge conditions on standing wave tube measurements of absorption and transmission loss. In Proceedings of the 15th International Congress on Sound and Vibration 2008, Daejeon, Korea, 6–10 July 2008. [Google Scholar]
- Lu, T.J.; Hess, A.; Ashby, M.F. Sound absorption in metallic foams. J. Appl. Phys. 1999, 85, 7528–7539. [Google Scholar] [CrossRef]
- Camuccio, C.A.; Sanavia, M.; Cutrone, F.; Marella, I.; Gregio, M.; Cabbia, C.; Baldo, V. Noise levels in an acute psychiatric unit: An exploratory observational study. Issues Ment. Health Nurs. 2019, 40, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Oh, J.E.; Joe, Y.G.; Lee, Y.Y. The performance improvement for an active noise control of an automotive intake system under rapidly accelerated conditions. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 2004, 47, 314–320. [Google Scholar] [CrossRef]
Type | 1. Target Frequency Noise Level (SPL (dB) at 560 Hz) | 2. Recorded Milling Machine Noise Level (SPL (dB), 10 s on Average) | Thickness (mm) | |
---|---|---|---|---|
A | Artboard | 64.1 | 75.4 | 9 |
B | Rubber noise insulation | 57.0 | 76.4 | 2 |
C | Sponge | 76.6 | 78.9 | 5 |
D | Aluminum | 78.9 | 82.5 | 2 |
E | Sponge | 72.8 | 79.0 | 5 |
F | Thinsulator | 68.2 | 76.8 | 10 |
G | Triple soundproofing mat (Butyl + Aluminum + Sound-insulating material) | 58.2 | 72.1 | 10 |
Without Soundproofing Material | Triple-Soundproofing Mat | Thinsulator + Triple-Soundproofing Mat | |
---|---|---|---|
Average noise level (dB) | 78.7 | 73.8 | 70.4 |
Milling machine noise level (SPL) (dB, 10 s on average) | − | 5 | 8.3 |
Target frequency noise level at 560 Hz (SPL), (dB, 10 s on average) | − | 8 | 9 |
Without Soundproofing Material | After Applying Soundproofing Material | |
---|---|---|
Average noise level (dB) | 78.5 | 70.6 |
Temperature (°C) | 45 ± 2 | 45 ± 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, E.-S.; Lim, Y.-J.; Lee, J.; Moon, J.-B.; Kim, B. Application of Soundproofing Materials for Noise Reduction in Dental CAD/CAM Milling Machines. Appl. Sci. 2020, 10, 2768. https://doi.org/10.3390/app10082768
Song E-S, Lim Y-J, Lee J, Moon J-B, Kim B. Application of Soundproofing Materials for Noise Reduction in Dental CAD/CAM Milling Machines. Applied Sciences. 2020; 10(8):2768. https://doi.org/10.3390/app10082768
Chicago/Turabian StyleSong, Eun-Sung, Young-Jun Lim, Joongsoo Lee, Jung-Bon Moon, and Bongju Kim. 2020. "Application of Soundproofing Materials for Noise Reduction in Dental CAD/CAM Milling Machines" Applied Sciences 10, no. 8: 2768. https://doi.org/10.3390/app10082768
APA StyleSong, E. -S., Lim, Y. -J., Lee, J., Moon, J. -B., & Kim, B. (2020). Application of Soundproofing Materials for Noise Reduction in Dental CAD/CAM Milling Machines. Applied Sciences, 10(8), 2768. https://doi.org/10.3390/app10082768