Feasibility of Utilizing Biodegradable Plastic Film to Cover Corn Silage under Farm Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crop and Ensiling Procedure
2.2. Sample Preparation and Analyses
2.3. Statistical Analysis
3. Results
3.1. Forage Characteristics at Ensiling
3.2. Temperature During the Experiment
3.3. Fermentative Profile
3.4. Microbial Count and Aerobic Stability
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ferraretto, L.; Shaver, R.; Luck, B. Silage review: Recent advances and future technologies for whole-plant and fractionated corn silage harvesting. J. Dairy Sci. 2018, 101, 3937–3951. [Google Scholar] [CrossRef] [PubMed]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstra, S.F. Microbiology of ensiling. In Silage Science and Technology (Agronomy Series No. 42); Buxton, D.R., Muck, R.E., Harrison, H.J., Eds.; American Society of Agronomy: Madison, WI, USA, 2003; pp. 31–93. [Google Scholar]
- Woolford, M.K. The detrimental effect of air on silage. J. Appl. Bacteriol. 1990, 68, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Borreani, G.; Tabacco, E.; Cavallarin, L. A new oxygen barrier film reduces aerobic deterioration in farm-scale corn silage. J. Dairy Sci. 2007, 90, 4701–4706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. Packaged silage: Will plastics replaced silos? N. J. Agric. 1953, 35, 4–5. [Google Scholar]
- Wilkinson, J.M.; Bolsen, K.K.; Lin, C.J. History of silage. In Silage Science and Technology (Agronomy Series No. 42); Buxton, D.R., Muck, R.E., Harrison, H.J., Eds.; American Society of Agronomy: Madison, WI, USA, 2003; pp. 1–30. [Google Scholar]
- Borreani, G.; Tabacco, E. Plastics in Animal Production. In A Guide to the Manufacture, Performance, and Potential of Plastics in Agriculture; Orzolek, M.D., Ed.; Elsevier Science Oxford: Oxford, UK, 2017; pp. 145–185. [Google Scholar]
- Borreani, G.; Tabacco, E. Improving corn silage quality in the top layer of farm bunker silos through the use of a next-generation barrier film with high impermeability to oxygen. J. Dairy Sci. 2014, 97, 2415–2426. [Google Scholar] [CrossRef]
- Cavallarin, L.; Tabacco, E.; Antoniazzi, S.; Borreani, G. Aflatoxin accumulation in whole crop maize silage as a result of aerobic exposure. J. Sci. Food Agric. 2011, 91, 2419–2425. [Google Scholar] [CrossRef]
- Dolci, P.; Tabacco, E.; Cocolin, L.; Borreani, G. Microbial dynamics during aerobic exposure of corn silage stored under oxygen barrier or polyethylene films. Appl. Environ. Microbiol. 2011, 77, 7499–7507. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.M.; Fenlon, J.S. A meta-analysis comparing standard polyethylene and oxygen barrier film in terms of losses during storage and aerobic stability of silage. Grass Forage Sci. 2014, 69, 385–392. [Google Scholar] [CrossRef]
- Kyrikou, I.; Briassoulis, D. Biodegradation of agricultural plastic films: A critical review. J. Polym. Environ. 2007, 15, 125–150. [Google Scholar] [CrossRef]
- Bhatti, J.A. Current State and Potential for Increasing Plastics Recycling in the U.S. Master’s Thesis, Columbia University, Sponsored by Earth Engineering Center, New York City, NY, USA, 2010. [Google Scholar]
- Holmes, B.J.; Springman, R. Recycling Silo-Bags and Other Agricultural Plastic Films (A 3875); Cooperative Extension of the University of Wisconsin: Madison, WI, USA, 2009. [Google Scholar]
- Borreani, G.; Dolci, P.; Tabacco, E.; Cocolin, L. Aerobic deterioration stimulates outgrowth of spore-forming Paenibacillus in corn silage stored under oxygen-barrier or polyethylene films. J. Dairy Sci. 2013, 96, 5206–5216. [Google Scholar] [CrossRef] [PubMed]
- Savoie, P.; Bernier-Roy, M.; Pedneault, M.L.; Amyot, A. Evaluation of apple pulp and peanut butter as alternative bunker silo covers. Can. Biosyst. Eng. 2003, 45, 217–222. [Google Scholar]
- Denoncourt, P.; Caillet, S.; Lacroix, M. Bacteriological and chemical changes occurring in bunker-stored silage covered with biodegradable coating. J. Appl. Microbiol. 2007, 103, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Razza, F.; Degli Innocenti, F. Bioplastics from renewable resources: The benefits of Biodegradability. Asia-Pac. J. Chem. Eng. 2012, 7, S301–S309. [Google Scholar] [CrossRef]
- Bastioli, C. Properties and application of Mater-Bi starch-based materials. Polym. Degrad. Stab. 1998, 59, 263–272. [Google Scholar] [CrossRef]
- Borreani, G.; Revello Chion, A.; Piano, S.; Ranghino, F.; Tabacco, E. A preliminary study on new biodegradable films to cover silages. In Proceedings of the 23rd General Meeting of the European Grassland Federation, Kiel, Germany, 29 August–2 September 2010; pp. 202–204. [Google Scholar]
- Borreani, G.; Tabacco, E. Bio-based biodegradable film to replace the standard polyethylene cover for silage conservation. J. Dairy Sci. 2015, 98, 386–394. [Google Scholar] [CrossRef]
- Spadaro, D.; Bustos-Lopez, M.P.; Gullino, M.L.; Piano, S.; Tabacco, E.; Borreani, G. Evolution of fungal populations in corn silage conserved under polyethylene or biodegradable films. J. Appl. Microbiol. 2015, 119, 510–520. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. ASTM standard method D3985-81; Annual Book of Standards; ASTM: Philadelphia, PA, USA, 1980. [Google Scholar]
- American Society for Testing and Materials. ASTM Standard Method F1249-06; Annual Book of Standards; ASTM: Philadelphia, PA, USA, 2011. [Google Scholar]
- Porter, M.G.; Murray, R.S. The volatility of components of grass silage on oven drying and the inter-relationship between dry-matter content estimated by different analytical methods. Grass Forage Sci. 2001, 56, 405–411. [Google Scholar] [CrossRef] [Green Version]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods of dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Robertson, J.B.; Van Soest, P.J. The detergent system of analysis and its application to human foods. In The Analysis of Dietary Fiber in Food; James, W.P.T., Theander, O., Eds.; Marcel Dekker: New York, NY, USA, 1981; pp. 123–158. [Google Scholar]
- Playne, M.J.; McDonald, P. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 1966, 17, 264–268. [Google Scholar] [CrossRef]
- Canale, A.; Valente, M.E.; Ciotti, A. Determination of volatile carboxylic acids (C1-C5) and lactic acid in aqueous acid extracts of silage by high performance liquid chromatography. J. Sci. Food Agric. 1984, 35, 1178–1182. [Google Scholar] [CrossRef]
- Muck, R.E. Recent advances in silage microbiology. Agric. Food Sci. 2013, 22, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.M.; Davies, D.R. The aerobic stability of silage: Key findings and recent developments. Grass Forage Sci. 2013, 68, 1–19. [Google Scholar] [CrossRef]
- Bolsen, K.K.; Dickerson, J.T.; Brent, B.E.; Sonon, R.N., Jr.; Dalke, B.S.; Lin, C.; Boyer, J.E., Jr. Rate and extent of top spoilage losses in horizontal silos. J. Dairy Sci. 1993, 76, 2940–2962. [Google Scholar] [CrossRef]
- Orosz, S.; Wilkinson, J.M.; Wigley, S.; Bìrò, Z.; Gallo, J. Microbial status, aerobic stability and fermentation of maize silage sealed with an oxygen barrier film. Agric. Food Sci. 2013, 22, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Borreani, G.; Piano, S.; Tabacco, E. Aerobic stability of maize silage stored under plastic films with different oxygen permeability. J. Sci. Food Agric. 2014, 94, 2684–2690. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.M.; Dos Santos, J.P.; Casagrande, D.R.; Ávila, C.L.S.; Lara, M.S.; Bernardes, T.F. Lining bunker walls with oxygen barrier film reduces nutrient losses in corn silages. J. Dairy Sci. 2017, 100, 4565–4573. [Google Scholar] [CrossRef] [Green Version]
- Guerrini, S.; Borreani, G.; Voojis, H. Biodegradable materials in agriculture: Case histories and perspectives. In Soil Degradable Bioplastics for a Sustainable Modern Agriculture; Malinconico, M., Ed.; Springer International Publishing AG: Berlin, Germany, 2017; pp. 35–65. [Google Scholar]
- Ashbell, G.; Lisker, N. Aerobic deterioration in maize silage stored in a bunker silos under farm conditions in a subtropical climate. J. Sci. Food Agric. 1988, 45, 307–315. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Bucks, PA, USA, 1991. [Google Scholar]
- Ferrero, F.; Piano, S.; Tabacco, E.; Borreani, G. Effects of conservation period and Lactobacillus hilgardii inoculum on the fermentation profile and aerobic stability of whole corn and sorghum silages. J. Food Sci. Agric. 2019, 99, 2530–2540. [Google Scholar] [CrossRef]
- Green, O.; Bartzanas, T.; Løkke, M.M.; Bochtis, D.D.; Sørensen, C.G.; Jørgensen, O.J.; Tortajada, V.G. Spatial and temporal variation of temperature and oxygen concentration inside silage stacks. Biosyst. Eng. 2012, 111, 155–165. [Google Scholar] [CrossRef]
Item | Value |
---|---|
DM, % | 40.9 ± 2.1 |
pH | 5.89 ± 0.07 |
Water activity, aw | 0.981 ± 0.002 |
Buffering capacity, mEq/kg DM | 87.1 ± 9.1 |
Nitrate content (mg/kg DM) | < 100 |
NH3-N, % TN | 0.45 ± 0.24 |
NDF, % DM | 37.9 ± 1.3 |
ADF, % DM | 21.4 ± 1.2 |
Lignin, % DM | 2.6 ± 0.16 |
CP, % DM | 6.8 ± 0.85 |
Ether Extract, % DM | 2.7 ± 0.12 |
Ash, % DM | 3.9 ± 0.46 |
Starch, % DM | 36.6 ± 2.6 |
Lactic acid bacteria, log10 cfu/g | 5.97 ± 0.32 |
Yeasts, log10 cfu/g | 8.04 ± 0.22 |
Molds, log10 cfu/g | 6.67 ± 0.43 |
Data | Mean T | Max T | Min T | |
---|---|---|---|---|
Ensiling | 7 Sept | 18.9 | 27.4 | 13.1 |
21 d | 28 Sept | 17.8 | 27.6 | 10.5 |
85 d | 01 Dec | 4.5 | 12.0 | –0.4 |
133 d | 18 Jan | –3.4 | 2.3 | –7.2 |
185 d | 10 Mar | 5.7 | 14.1 | –1.6 |
230 d | 24 Apr | 13.7 | 21.2 | 7.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabacco, E.; Ferrero, F.; Borreani, G. Feasibility of Utilizing Biodegradable Plastic Film to Cover Corn Silage under Farm Conditions. Appl. Sci. 2020, 10, 2803. https://doi.org/10.3390/app10082803
Tabacco E, Ferrero F, Borreani G. Feasibility of Utilizing Biodegradable Plastic Film to Cover Corn Silage under Farm Conditions. Applied Sciences. 2020; 10(8):2803. https://doi.org/10.3390/app10082803
Chicago/Turabian StyleTabacco, Ernesto, Francesco Ferrero, and Giorgio Borreani. 2020. "Feasibility of Utilizing Biodegradable Plastic Film to Cover Corn Silage under Farm Conditions" Applied Sciences 10, no. 8: 2803. https://doi.org/10.3390/app10082803
APA StyleTabacco, E., Ferrero, F., & Borreani, G. (2020). Feasibility of Utilizing Biodegradable Plastic Film to Cover Corn Silage under Farm Conditions. Applied Sciences, 10(8), 2803. https://doi.org/10.3390/app10082803