Estimating the Rank of a Nonnegative Matrix Factorization Model for Automatic Music Transcription Based on Stein’s Unbiased Risk Estimator
Abstract
:1. Introduction
2. Problem Description
2.1. NMF Algorithm
2.2. Application of NMF to AMT
3. Method for Estimating the NMF Rank
3.1. Rank Estimation Using Stein’s Unbiased Risk Estimator
3.2. Noise Variance Estimation
Algorithm 1 Rank Estimation with SURE (RESURE) |
Require: Spectrogram , second onset frame number N. |
4. Simulation
4.1. Experimental Settings
4.2. Experimental Results
5. Conclusions
Funding
Conflicts of Interest
References
- Virtanen, T. Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. IEEE Trans. Audio Speech Lang. Process. 2007, 15, 1066–1074. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.D.; Seung, H.S. Algorithms for non-negative matrix factorization. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2001; pp. 556–562. [Google Scholar]
- Berry, M.W.; Browne, M.; Langville, A.N.; Pauca, V.P.; Plemmons, R.J. Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 2007, 52, 155–173. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, M.; Li, J.; Song, L.; Hao, Y. A Novel Signal Separation Method Based on Improved Sparse Non-Negative Matrix Factorization. Entropy 2019, 21, 445. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Huang, K.; Sidiropoulos, N.D.; Ma, W.K. Nonnegative Matrix Factorization for Signal and Data Analytics: Identifiability, Algorithms, and Applications. IEEE Signal Process. Mag. 2019, 36, 59–80. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Zhang, H.; Zhang, L. Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3909–3921. [Google Scholar] [CrossRef]
- Tsinos, C.G.; Rontogiannis, A.A.; Berberidis, K. Distributed blind hyperspectral unmixing via joint sparsity and low-rank constrained non-negative matrix factorization. IEEE Trans. Comput. Imaging 2017, 3, 160–174. [Google Scholar] [CrossRef]
- Smaragdis, P.; Brown, J.C. Non-negative matrix factorization for polyphonic music transcription. In Proceedings of the 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, 19–22 October 2003; pp. 177–180. [Google Scholar]
- Vincent, E.; Bertin, N.; Badeau, R. Harmonic and inharmonic nonnegative matrix factorization for polyphonic pitch transcription. In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 109–112. [Google Scholar]
- Benetos, E.; Dixon, S.; Duan, Z.; Ewert, S. Automatic music transcription: An overview. IEEE Signal Process. Mag. 2018, 36, 20–30. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, S.; Sung, K.M. Polyphonic Music Transcription by Nonnegative Matrix Factorization with Harmonicity and Temporality Criteria. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2012, 95, 1610–1614. [Google Scholar] [CrossRef]
- Cemgil, A.T. Bayesian inference for nonnegative matrix factorisation models. Comput. Intell. Neurosci. 2009, 2009, 1–17. [Google Scholar] [CrossRef]
- Hoffman, M.D.; Blei, D.M.; Cook, P.R. Bayesian nonparametric matrix factorization for recorded music. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Tan, V.Y.; Févotte, C. Automatic relevance determination in nonnegative matrix factorization with the/spl beta/-divergence. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1592–1605. [Google Scholar] [CrossRef] [PubMed]
- Ulfarsson, M.O.; Solo, V. Dimension estimation in noisy PCA with SURE and random matrix theory. IEEE Trans. Signal Process. 2008, 56, 5804–5816. [Google Scholar] [CrossRef]
- Stein, C.M. Estimation of the mean of a multivariate normal distribution. Ann. Stat. 1981, 9, 1135–1151. [Google Scholar] [CrossRef]
- Lee, S. Estimation of the Matrix Rank of Harmonic Components of a Spectrogram in a Piano Music Signal Based on the Stein’s Unbiased Risk Estimator and Median Filter. IEICE Trans. Inf. Syst. 2019, 102, 2276–2279. [Google Scholar] [CrossRef] [Green Version]
- Guan, N.; Tao, D.; Luo, Z.; Yuan, B. Online nonnegative matrix factorization with robust stochastic approximation. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1087–1099. [Google Scholar] [CrossRef]
- Lee, S. RLS-based on-line sparse nonnegative matrix factorization method for acoustic signal processing systems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2013, 96, 980–985. [Google Scholar] [CrossRef]
- Ulfarsson, M.O.; Solo, V. Tuning parameter selection for nonnegative matrix factorization. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6590–6594. [Google Scholar]
- Cichocki, A.; Zdunek, R.; Phan, A.H.; Amari, S.I. Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Wang, B.; Plumbley, M.D. Musical audio stream separation by non-negative matrix factorization. In Proceedings of the DMRN Summer Conference, At Glasgow, UK, 23–24 July 2005; pp. 23–24. [Google Scholar]
- Shitov, Y. The nonnegative rank of a matrix: Hard problems, easy solutions. SIAM Rev. 2017, 59, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.E.; Rothblum, U.G. Nonnegative Ranks, Decompositions, and Factorizations of Nonnegative Matices. Linear Algebra Appl. 1993, 190, 149–168. [Google Scholar] [CrossRef] [Green Version]
- Eldar, Y.C. Generalized SURE for exponential families: Applications to regularization. IEEE Trans. Signal Process. 2008, 57, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Baik, J.; Silverstein, J.W. Eigenvalues of large sample covariance matrices of spiked population models. J. Multivar. Anal. 2006, 97, 1382–1408. [Google Scholar] [CrossRef] [Green Version]
- Klapuri, A. Sound onset detection by applying psychoacoustic knowledge. In Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix, AZ, USA, 15–19 March 1999; Volume 6, pp. 3089–3092. [Google Scholar]
- Dixon, S. Onset detection revisited. In Proceedings of the 9th International Conference on Digital Audio Effects, Montreal, QC, Canada, 18–20 September 2006; Volume 120, pp. 133–137. [Google Scholar]
- Emiya, V.; Badeau, R.; David, B. Multipitch estimation of piano sounds using a new probabilistic spectral smoothness principle. IEEE Trans. Audio Speech Lang. Process. 2009, 18, 1643–1654. [Google Scholar] [CrossRef] [Green Version]
- Schörkhuber, C.; Klapuri, A.; Holighaus, N.; Dörfler, M. A Matlab toolbox for efficient perfect reconstruction time-frequency transforms with log-frequency resolution. In Proceedings of the Audio Engineering Society Conference: 53rd International Conference: Semantic Audio, London, UK, 27–29 January 2014. [Google Scholar]
- Hermes, D.J. Measurement of pitch by subharmonic summation. J. Acoust. Soc. Am. 1988, 83, 257–264. [Google Scholar] [CrossRef] [PubMed]
Clip No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of Notes | 28 | 30 | 34 | 27 | 33 | 42 | 27 | 33 | 33 | 26 | 32 | 20 | 43 | 25 | 59 |
VAR-NMF | 21 | 15 | 23 | 9 | 18 | 9 | 5 | 24 | 23 | 15 | 59 | 11 | 33 | 9 | 57 |
ARD-NMF | 23 | 17 | 24 | 14 | 20 | 20 | 17 | 12 | 13 | 14 | 22 | 32 | 14 | 23 | 14 |
ARD-NMF | 35 | 27 | 38 | 12 | 28 | 15 | 30 | 19 | 20 | 18 | 12 | 27 | 26 | 24 | 29 |
GaP-NMF | 22 | 20 | 23 | 20 | 22 | 22 | 19 | 20 | 23 | 18 | 17 | 21 | 23 | 22 | 14 |
RESUREv1 | 25 | 22 | 15 | 9 | 13 | 19 | 25 | 58 | 58 | 12 | 47 | 13 | 14 | 15 | 30 |
RESUREv2 | 31 | 39 | 30 | 14 | 35 | 34 | 40 | 18 | 17 | 23 | 62 | 18 | 40 | 35 | 51 |
Clip No. | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
Number of Notes | 52 | 23 | 49 | 19 | 39 | 46 | 21 | 23 | 27 | 28 | 29 | 45 | 36 | 43 | 18 |
VAR-NMF | 5 | 11 | 30 | 11 | 16 | 15 | 17 | 21 | 15 | 16 | 13 | 22 | 16 | 6 | 6 |
ARD-NMF | 17 | 16 | 12 | 41 | 19 | 15 | 20 | 35 | 19 | 24 | 22 | 14 | 15 | 15 | 53 |
ARD-NMF | 23 | 15 | 34 | 15 | 55 | 23 | 22 | 39 | 40 | 34 | 31 | 14 | 26 | 35 | 22 |
GaP-NMF | 15 | 17 | 18 | 24 | 16 | 19 | 19 | 21 | 20 | 22 | 20 | 17 | 21 | 17 | 21 |
RESUREv1 | 12 | 35 | 56 | 20 | 19 | 20 | 17 | 32 | 19 | 15 | 14 | 36 | 18 | 12 | 12 |
RESUREv2 | 46 | 4 | 37 | 26 | 44 | 53 | 21 | 39 | 24 | 29 | 18 | 57 | 18 | 62 | 5 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S. Estimating the Rank of a Nonnegative Matrix Factorization Model for Automatic Music Transcription Based on Stein’s Unbiased Risk Estimator. Appl. Sci. 2020, 10, 2911. https://doi.org/10.3390/app10082911
Lee S. Estimating the Rank of a Nonnegative Matrix Factorization Model for Automatic Music Transcription Based on Stein’s Unbiased Risk Estimator. Applied Sciences. 2020; 10(8):2911. https://doi.org/10.3390/app10082911
Chicago/Turabian StyleLee, Seokjin. 2020. "Estimating the Rank of a Nonnegative Matrix Factorization Model for Automatic Music Transcription Based on Stein’s Unbiased Risk Estimator" Applied Sciences 10, no. 8: 2911. https://doi.org/10.3390/app10082911
APA StyleLee, S. (2020). Estimating the Rank of a Nonnegative Matrix Factorization Model for Automatic Music Transcription Based on Stein’s Unbiased Risk Estimator. Applied Sciences, 10(8), 2911. https://doi.org/10.3390/app10082911