Development of Visible/Near-Infrared Hyperspectral Imaging for the Prediction of Total Arsenic Concentration in Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Soil Chemical Analysis
2.2. Hyperspectral Imaging System and Image Acquisition
2.3. Spectral Profile Extraction and Data Calibration
2.4. Feature Band Selection
2.5. Model Development and Evaluation
3. Results and Discussion
3.1. Preprocessing Comparative Analysis
3.2. Regression Model
3.3. Concentration Distribution Map
4. Conclusions
- (1)
- Using the images acquired in the hyperspectral imaging system, bands selected according to different correlation coefficients are put into different models for prediction, it was found that the Spearman’s rank correlation coefficients were an effective way to select the characteristic bands of TAs content. ETR (R2 = 0.81, RMSE = 0.38), RF (R2 = 0.78, RMSE = 0.42), SVMR (R2 = 0.78, RMSE = 0.42) models are capable of predicting total As content.
- (2)
- Soil TAs concentration distribution map shows, the Spearman’s rank correlation coefficients selected bands for ETR model, to predict the soil TAs distribution map generated by the pixel spectral of the hyperspectral image can be used as for estimation of TAs concentration in soil.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cullen, W.; Reimer, K. ChemInform Abstract: Arsenic Speciation in the Environment. ChemInform 1989, 20, 713–764. [Google Scholar] [CrossRef]
- Wedepohl, K. The Composition of the Continental Crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Rudnick, R.; Gao, S. Composition of the Continental Crust. Treatise Geochem 3:1–64. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Shi, T.Z.; Liu, H.Z.; Wang, J.J.; Chen, Y.Y.; Fei, T.; Wu, G.F. Monitoring Arsenic Contamination in Agricultural Soils with Reflectance Spectroscopy of Rice Plants. Environ. Sci. Technol. 2014, 48, 6264–6272. [Google Scholar] [CrossRef]
- Shi, T.Z.; Chen, Y.Y.; Liu, Y.L.; Wu, G.F. Visible and near-infrared reflectance spectroscopy-An alternative for monitoring soil contamination by heavy metals. J. Hazard. Mater. 2014, 265, 166–176. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Humans; Springer: Berlin, Germany, 2007. [Google Scholar]
- Miano, T.; D’Orazio, V.; Zaccone, C. Trace elements and food safety. In PHEs, Environment and Human Health. Potentially Harmful Elements in the Environment and the Impact on Human Health; Springer: Berlin, Germany, 2014; Volume 9, pp. 339–370. [Google Scholar]
- Yang, Q.Q.; Li, Z.Y.; Lu, X.N.; Duan, Q.N.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Stazi, S.R.; Cassaniti, C.; Marabottini, R.; Giuffrida, F.; Leonard, C. Arsenic uptake and partitioning in grafted tomato plants. Hortic. Environ. Biotechnol. 2016, 57, 241–247. [Google Scholar] [CrossRef]
- Choe, E.; van der Meer, F.; van Ruitenbeek, F.; van der Werff, H.; de Smeth, B.; Kim, K.-W. Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sens. Environ. 2008, 112, 3222–3233. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.H.; Zhang, Z.Q. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Jiang, X.L.; Zou, B.; Feng, H.H.; Tang, J.W.; Tu, Y.L.; Zhao, X.G. Spatial distribution mapping of Hg contamination in subclass agricultural soils using GIS enhanced multiple linear regression. J. Geochem. Explor. 2019, 196, 1–7. [Google Scholar] [CrossRef]
- Tao, C.; Wang, Y.J.; Cui, W.B.; Zou, B.; Zou, Z.R.; Tu, Y.L. A transferable spectroscopic diagnosis model for predicting arsenic contamination in soil. Sci. Total Environ. 2019, 669, 964–972. [Google Scholar] [CrossRef]
- Cheburkin, A.; Shotyk, W. An Energy-dispersive Miniprobe Multielement Analyzer (EMMA) for direct analysis of Pb and other trace elements in peats. Anal. Bioanal. Chem. 1996, 354, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Dell’Aglio, M.; Gaudiuso, R.; Senesi, G.S.; De Giacomo, A.; Zaccone, C.; Miano, T.M.; De Pascale, O. Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS). J. Environ. Monit. 2011, 13, 1422–1426. [Google Scholar] [CrossRef] [PubMed]
- Malmir, M.; Tahmasbian, I.; Xu, Z.H.; Farrar, M.B.; Bai, S.H. Prediction of soil macro- and micro-elements in sieved and ground air-dried soils using laboratory-based hyperspectral imaging technique. Geoderma 2019, 340, 70–80. [Google Scholar] [CrossRef]
- Manley, M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chem. Soc. Rev. 2014, 43, 8200–8214. [Google Scholar] [CrossRef] [Green Version]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning. J. Food Eng. 2016, 170, 8–15. [Google Scholar] [CrossRef]
- Stazi, S.R.; Antonucci, F.; Pallottino, F.; Costa, C.; Marabottini, R.; Petruccioli, M.; Menesatti, P. Hyperspectral Visible-Near Infrared Determination of Arsenic Concentration in Soil. Commun. Soil Sci. Plant Anal. 2014, 45, 2911–2920. [Google Scholar] [CrossRef]
- Tahmasbian, I.; Xu, Z.H.; Boyd, S.; Zhou, J.; Esmaeilani, R.; Che, R.X.; Bai, S.H. Laboratory-based hyperspectral image analysis for predicting soil carbon, nitrogen and their isotopic compositions. Geoderma 2018, 330, 254–263. [Google Scholar] [CrossRef]
- Yang, M.; Xu, D.; Chen, S.; Li, H.; Shi, Z. Evaluation of Machine Learning Approaches to Predict Soil Organic Matter and pH Using vis-NIR Spectra. Sensors 2019, 19, 263. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.Z.; Liu, H.Z.; Chen, Y.Y.; Fei, T.; Wang, J.J.; Wu, G.F. Spectroscopic Diagnosis of Arsenic Contamination in Agricultural Soils. Sensors 2017, 17, 1036. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.F.; Yuan, Z.R.; Zhong, Y.F.; Yang, L.F.; Hu, X.; Zhang, Y.X. An Improved Gradient Boosting Regression Tree Estimation Model for Soil Heavy Metal (Arsenic) Pollution Monitoring Using Hyperspectral Remote Sensing. Appl. Sci. 2019, 9, 1943. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.H.; Tahmasbian, I.; Zhou, J.; Nevenimo, T.; Hannet, G.; Walton, D.; Randall, B.; Gama, T.; Wallace, H.M. A non-destructive determination of peroxide values, total nitrogen and mineral nutrients in an edible tree nut using hyperspectral imaging. Comput. Electron. Agric. 2018, 151, 492–500. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, Y.-M.; Zhou, W.; Liu, Z.-H.; Pan, Y.-C.; Shi, Z.; Wang, L.; Wang, G.-X. Estimation Methods for Soil Mercury Content Using Hyperspectral Remote Sensing. Sustainability 2018, 10, 2474. [Google Scholar] [CrossRef] [Green Version]
- Schimleck, L.; Dahlen, J.; Yoon, S.-C.; Lawrence, K.C.; Jones, P.D. Prediction of Douglas-Fir Lumber Properties: Comparison between a Benchtop Near-Infrared Spectrometer and Hyperspectral Imaging System. Appl. Sci. 2018, 8, 2602. [Google Scholar] [CrossRef] [Green Version]
- Kandpal, L.M.; Lee, J.; Bae, J.; Lohumi, S.; Cho, B.-K. Development of a Low-Cost Multi-Waveband LED Illumination Imaging Technique for Rapid Evaluation of Fresh Meat Quality. Appl. Sci. 2019, 9, 912. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Li, X.; Zhu, P.; Xu, N.; He, Y. Hyperspectral Reflectance Imaging Combined with Multivariate Analysis for Diagnosis of Sclerotinia Stem Rot on Arabidopsis Thaliana Leaves. Appl. Sci. 2019, 9, 2092. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.W.; Wang, C.K.; Liu, Y.; Li, Y.L.; Liu, J.; Xu, A.A.; Pan, K.; Li, Y.C.; Pan, X.Z. Mapping the Salt Content in Soil Profiles using Vis-NIR Hyperspectral Imaging. Soil Sci. Soc. Am. J. 2018, 82, 1259–1269. [Google Scholar] [CrossRef]
- Wang, Y.K.; Yin, C.Q.; Zhang, J.Q.; Liu, X.L.; Kang, W.; Liu, L.; Xiao, W.S. Risk Assessment of Heavy Metals in Farmland Soils near Mining Areas in Daye City, Hubei Province, China. Fresenius Environ. Bull. 2016, 25, 490–499. [Google Scholar]
- Zhang, X.; Sun, W.C.; Cen, Y.; Zhang, L.F.; Wang, N. Predicting cadmium concentration in soils using laboratory and field reflectance spectroscopy. Sci. Total Environ. 2019, 650, 321–334. [Google Scholar] [CrossRef]
- Tan, K.; Ye, Y.Y.; Du, P.J.; Zhang, Q.Q. Estimation of Heavy Metal Concentrations in Reclaimed Mining Soils Using Reflectance Spectroscopy. Spectrosc. Spectr. Anal. 2014, 34, 3317–3322. [Google Scholar]
- Shan, J.J.; Zhao, J.B.; Liu, L.F.; Zhang, Y.T.; Wang, X.; Wu, F.C. A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics. Environ. Pollut. 2018, 238, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.J.; Jin, X.; Zhao, L.; Dedo, I.M.; Li, S.W. Predicting sandy soil moisture content with hyperspectral imaging. Int. J. Agric. Biol. Eng. 2017, 10, 175–183. [Google Scholar]
- Burud, I.; Moni, C.; Flo, A.; Futsaether, C.; Steffens, M.; Rasse, D.P. Qualitative and quantitative mapping of biochar in a soil profile using hyperspectral imaging. Soil Tillage Res. 2016, 155, 523–531. [Google Scholar] [CrossRef]
- Li, X.L.; Wei, Y.Z.; Xu, J.; Feng, X.P.; Wu, F.Y.; Zhou, R.Q.; Jin, J.J.; Xu, K.W.; Yu, X.J.; He, Y. SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology. Postharvest Biol. Technol. 2018, 143, 112–118. [Google Scholar] [CrossRef]
- Ariana, D.P.; Lu, R.; Guyer, D.E. Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers. Comput. Electron. Agric. 2006, 53, 60–70. [Google Scholar] [CrossRef]
- Jia, S.Y.; Li, H.Y.; Wang, Y.J.; Tong, R.Y.; Li, Q. Hyperspectral Imaging Analysis for the Classification of Soil Types and the Determination of Soil Total Nitrogen. Sensors 2017, 17, 2252. [Google Scholar] [CrossRef]
- Rinnan, Å.; Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Xu, S.X.; Zhao, Y.C.; Wang, M.Y.; Shi, X.Z. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis-NIR spectroscopy. Geoderma 2018, 310, 29–43. [Google Scholar] [CrossRef]
- Tan, K.; Wang, H.M.; Zhang, Q.Q.; Jia, X.P. An improved estimation model for soil heavy metal(loid) concentration retrieval in mining areas using reflectance spectroscopy. J. Soils Sediments 2018, 18, 2008–2022. [Google Scholar] [CrossRef]
- Tan, K.; Ma, W.B.; Wu, F.Y.; Du, Q. Random forest-based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data. Environ. Monit. Assess. 2019, 191, 446. [Google Scholar] [CrossRef]
- Dong, B.; Cao, C.; Lee, S.E. Applying support vector machines to predict building energy consumption in tropical region. Energy Build. 2005, 37, 545–553. [Google Scholar] [CrossRef]
- Tan, K.; Wang, H.; Chen, L.; Du, Q.; Du, P.; Pan, C. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest. J. Hazard. Mater. 2020, 382, 120987. [Google Scholar] [CrossRef] [PubMed]
- Sirsat, M.S.; Cernadas, E.; Fernandez-Delgado, M.; Barro, S. Automatic prediction of village-wise soil fertility for several nutrients in India using a wide range of regression methods. Comput. Electron. Agric. 2018, 154, 120–133. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Mouraud, A.; Rezgui, Y.; Mourshed, M. Deep Highway Networks and Tree-Based Ensemble for Predicting Short-Term Building Energy Consumption. Energies 2018, 11, 3408. [Google Scholar] [CrossRef] [Green Version]
- Galvão, R.K.H.; Araujo, M.C.U.; José, G.E.; Pontes, M.J.C.; Silva, E.C.; Saldanha, T.C.B. A method for calibration and validation subset partitioning. Talanta 2005, 67, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.P. The Coefficient of Determination—Some Limitations. Am. Stat. 1974, 28, 19–20. [Google Scholar]
- Liu, J.; Dong, Z.; Sun, Z.; Ma, H.; Shi, L. Study on Hyperspectral Characteristics and Estimation Model of Soil Mercury Content. IOP Conf. Ser. Mater. Sci. Eng. 2017, 274, 012030. [Google Scholar] [CrossRef]
- Hobley, E.; Steffens, M.; Bauke, S.L.; Kogel-Knabner, I. Hotspots of soil organic carbon storage revealed by laboratory hyperspectral imaging. Sci. Rep. 2018, 8, 13900. [Google Scholar] [CrossRef]
TAs | No. | Maximum | Minimum | Mean | Std. | Skewness | Kurtosis | Per% |
---|---|---|---|---|---|---|---|---|
Total data set | 59 | 16.41 | 7.04 | 9.6527 | 1.4699 | 1.74 | 5.71 | 100 |
Preprocessing and Modeling | Characteristic Bands Wavelength (nm) and Correlation Coefficients | Validation | ||
---|---|---|---|---|
RMSECV | REcv(%) | |||
SNV+PLSR | 560.7 (−0.55), 564.0 (−0.54), 749.5 (0.52) | 0.49 | 0.63 | 6.63 |
SNV+SVMR | 0.56 | 0.58 | 6.14 | |
SNV+RF | 0.53 | 0.60 | 6.31 | |
SNV+ETR | 0.59 | 0.56 | 5.86 | |
MSC+PLSR | 519 (0.50), 560.7 (−0.53), 564.0 (−0.52) | 0.07 | 0.76 | 7.88 |
MSC +SVMR | 0.23 | 0.69 | 7.22 | |
MSC +RF | 0.25 | 0.68 | 7.15 | |
MSC +ETR | 0.26 | 0.67 | 6.98 | |
SD+PLSR | 560.7 (0.53), 576.7 (0.52), 697.0 (0.58) | 0.23 | 0.64 | 6.64 |
SD +SVMR | 0.36 | 0.58 | 6.09 | |
SD +RF | 0.51 | 0.51 | 5.47 | |
SD +ETR | 0.51 | 0.51 | 5.43 | |
FD+PLSR | 700 (0.86), 703 (0.72), 706 (0.78) | 0.71 | 0.48 | 5.03 |
FD +SVMR | 0.78 | 0.42 | 4.50 | |
FD +RF | 0.78 | 0.42 | 4.45 | |
FD +ETR | 0.81 | 0.38 | 4.08 |
Modeling Method | R2cv | RMSEcv | REcv (%) |
---|---|---|---|
PLSR | 0.71 | 0.48 | 5.03 |
SVMR | 0.78 | 0.42 | 4.50 |
RF | 0.78 | 0.42 | 4.45 |
ETR | 0.81 | 0.38 | 4.08 |
No. | Measured Value (μg/g) | Std. | Mean | 0–8 (μg/g) | 8–10 (μg/g) | 10–12 (μg/g) | 12–14 (μg/g) | 14+ (μg/g) |
---|---|---|---|---|---|---|---|---|
a | 7.04 | 4.10 | 8.01 | 37% | 42% | 4% | 13% | 4% |
b | 8.26 | 4.12 | 8.58 | 32% | 47% | 5% | 11% | 5% |
c | 8.69 | 4.13 | 8.59 | 25% | 56% | 7% | 8% | 4% |
d | 9.36 | 4.20 | 8.63 | 23% | 54% | 5% | 11% | 7% |
e | 10.58 | 4.23 | 8.68 | 24% | 50% | 10% | 9% | 6% |
f | 11.05 | 4.36 | 8.92 | 23% | 51% | 9% | 11% | 6% |
g | 11.25 | 4.37 | 8.96 | 25% | 48% | 12% | 10% | 5% |
h | 16.41 | 4.39 | 9.05 | 22% | 48% | 9% | 13% | 8% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Zhang, Y.; Yuan, Z.; Wang, Z.; Yin, F.; Cao, L. Development of Visible/Near-Infrared Hyperspectral Imaging for the Prediction of Total Arsenic Concentration in Soil. Appl. Sci. 2020, 10, 2941. https://doi.org/10.3390/app10082941
Wei L, Zhang Y, Yuan Z, Wang Z, Yin F, Cao L. Development of Visible/Near-Infrared Hyperspectral Imaging for the Prediction of Total Arsenic Concentration in Soil. Applied Sciences. 2020; 10(8):2941. https://doi.org/10.3390/app10082941
Chicago/Turabian StyleWei, Lifei, Yangxi Zhang, Ziran Yuan, Zhengxiang Wang, Feng Yin, and Liqin Cao. 2020. "Development of Visible/Near-Infrared Hyperspectral Imaging for the Prediction of Total Arsenic Concentration in Soil" Applied Sciences 10, no. 8: 2941. https://doi.org/10.3390/app10082941
APA StyleWei, L., Zhang, Y., Yuan, Z., Wang, Z., Yin, F., & Cao, L. (2020). Development of Visible/Near-Infrared Hyperspectral Imaging for the Prediction of Total Arsenic Concentration in Soil. Applied Sciences, 10(8), 2941. https://doi.org/10.3390/app10082941