Effects of Fence Enclosure on Vegetation Community Characteristics and Productivity of a Degraded Temperate Meadow Steppe in Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Methods
2.2.1. Experimental Setting
2.2.2. Measurements
2.3. Diversity Indices
2.4. Data Analysis
3. Results
3.1. Plant Importance Values
3.2. Community Height, Coverage, and Density
3.3. Community Diversity
3.4. Biomass Production
4. Discussion
4.1. Plant Community Characteristics
4.2. Plant Diversity
4.3. Grassland Productivity
4.4. Optimal Enclosure Duration
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hou, X. The development theory and key supporting science and technologies of grasslands and animal husbandry in China. Pratacul. Sci. 2015, 32, 823–827. [Google Scholar]
- Ye, L.; Yang, J.; Verdoodt, A.; Moussadek, R.; Van Ranst, E. China’s food security threatened by soil degradation and biofuels production. In Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 5–8. [Google Scholar]
- Ye, L.-M.; Malingreau, J.-P.; Tang, H.-J.; Van Ranst, E. The breakfast imperative: The changing context of global food security. J. Integr. Agric. 2016, 15, 1179–1185. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhang, X.Q.; Wang, X.Y.; Liu, N.; Kan, H.M. Establishing the carrying capacity of the grasslands of China: A review. Rangel. J. 2014, 36. [Google Scholar] [CrossRef] [Green Version]
- Robinson, B.E.; Li, P.; Hou, X. Institutional change in social-ecological systems: The evolution of grassland management in Inner Mongolia. Glob. Env. Chang. 2017, 47, 64–75. [Google Scholar] [CrossRef]
- Wei, P.; Xu, L.; Pan, X.; Hu, Q.; Li, Q.; Zhang, X.; Shao, C.; Wang, C.; Wang, X. Spatio-temporal variations in vegetation types based on a climatic grassland classification system during the past 30 years in Inner Mongolia, China. Catena 2020, 185, 104298. [Google Scholar] [CrossRef]
- Zhou, W.; Li, J.; Yue, T. Remote Sensing Monitoring and Evaluation of Degraded Grassland in China: Accounting of Grassland Carbon Source and Carbon Sink; Springer: Singapore, 2020; p. 138. [Google Scholar] [CrossRef]
- Schönbach, P.; Wan, H.; Gierus, M.; Bai, Y.; Müller, K.; Lin, L.; Susenbeth, A.; Taube, F. Grassland responses to grazing: effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant Soil 2011, 340, 103–115. [Google Scholar] [CrossRef]
- Golodets, C.; Kigel, J.; Sternberg, M. Recovery of plant species composition and ecosystem function after cessation of grazing in a Mediterranean grassland. Plant Soil 2009, 329, 365–378. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, J.; Clark, C.M.; Pan, Q.; Zhang, L.; Chen, S.; Wang, Q.; Han, X.; Wisley, B. Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. J. Appl. Ecol. 2012, 49, 1204–1215. [Google Scholar] [CrossRef]
- Nie, Y.; Wang, G.; Peng, F.; Du, G. Effects of enclosure on community characteristics in Hunlunbuir meadow steppe. Chin. J. Grassl. 2016, 38, 87–92. [Google Scholar]
- Gu, J.; Wang, M.; Zhao, J. Analysis and evaluation report of grassland resources in Inner Mongolia. Inn. Mong. Prataculture 1997, 1, 5–12. (In Chinese) [Google Scholar]
- Chen, B.; Zhu, L.; Li, G.; Hu, Y.; Xin, X. Analysis of vegetation characteristics under different grazing intensities in Hulunber meadow steppe. Chin. J. Agric. Resour. Reg. Plan. 2010, 31, 67–71. [Google Scholar]
- Lv, S.; Lu, X.; Gao, J. Response of soil fauna to environment degeneration by wind erosion in a Hulunbeir steppe. Chin. J. Appl. Ecol. 2007, 18, 2055–2060. [Google Scholar]
- Ye, L.; Van Ranst, E. Production scenarios and the effect of soil degradation on long-term food security in China. Glob. Env. Chang. 2009, 19, 464–481. [Google Scholar] [CrossRef]
- Bindraban, P.S.; van der Velde, M.; Ye, L.; van den Berg, M.; Materechera, S.; Kiba, D.I.; Tamene, L.; Ragnarsdóttir, K.V.; Jongschaap, R.; Hoogmoed, M.; et al. Assessing the impact of soil degradation on food production. Curr. Opin. Environ. Sustain. 2012, 4, 478–488. [Google Scholar] [CrossRef]
- Gongbuzeren; Zhuang, M.; Li, W. Market-based grazing land transfers and customary institutions in the management of rangelands: Two case studies on the Qinghai-Tibetan Plateau. Land Use Policy 2016, 57, 287–295. [Google Scholar] [CrossRef]
- Chen, H.; Shao, L.; Zhao, M.; Zhang, X.; Zhang, D. Grassland conservation programs, vegetation rehabilitation and spatial dependency in Inner Mongolia, China. Land Use Policy 2017, 64, 429–439. [Google Scholar] [CrossRef]
- Xia, T.; Wu, W.; Zhou, Q.; Tan, W.; Verburg, P.H.; Yang, P.; Ye, L. Modeling the spatio-temporal changes in land uses and its impacts on ecosystem services in Northeast China over 2000–2050. J. Geogr. Sci. 2018, 28, 1611–1625. [Google Scholar] [CrossRef] [Green Version]
- National Statistical Bureau of China. China Statistical Yearbook 2019; China Statistical Press: Beijing, China, 2019; p. 935.
- Meyer, N. Desertification and restoration of grasslands in Inner Mongolia. J. For. 2006, 104, 328–331. [Google Scholar]
- Zhang, G.G.; Li, X.D.; Kang, Y.M.; Han, G.D.; Hong, M.; Sakurai, K. How to restore the degraded grassland in Inner Mongolia of China? J. Food Agric. Environ. 2013, 11, 1124–1127. [Google Scholar]
- Koerner, S.E.; Collins, S.L. Interactive effects of grazing, drought, and fire on grassland plant communities in North America and South Africa. Ecology 2014, 95, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Oñatibia, G.R.; Aguiar, M.R. Continuous moderate grazing management promotes biomass production in Patagonian arid rangelands. J. Arid Environ. 2016, 125, 73–79. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Zhang, Q.; Liu, J.; Yi, B.; Li, Y.; Wang, J.; Di, H. Grazing and enclosure alter the vertical distribution of organic nitrogen pools and bacterial communities in semiarid grassland soils. Plant Soil 2019, 439, 525–539. [Google Scholar] [CrossRef]
- Verdoodt, A.; Mureithi, S.M.; Ye, L.; Van Ranst, E. Chronosequence analysis of two enclosure management strategies in degraded rangeland of semi-arid Kenya. Agric. Ecosyst. Environ. 2009, 129, 332–339. [Google Scholar] [CrossRef]
- Schrama, M.J.J.; Cordlandwehr, V.; Visser, E.J.W.; Elzenga, T.M.; de Vries, Y.; Bakker, J.P. Grassland cutting regimes affect soil properties, and consequently vegetation composition and belowground plant traits. Plant Soil 2013, 366, 401–413. [Google Scholar] [CrossRef] [Green Version]
- Gonzales, E.K.; Clements, D.R. Plant community biomass shifts in response to mowing and fencing in invaded oak meadows with non-native grasses and abundant ungulates. Restor. Ecol. 2010, 18, 753–761. [Google Scholar] [CrossRef]
- Feng, R.; Long, R.; Shang, Z.; Ma, Y.; Dong, S.; Wang, Y. Establishment of Elymus natans improves soil quality of a heavily degraded alpine meadow in Qinghai-Tibetan Plateau, China. Plant Soil 2009, 327, 403–411. [Google Scholar] [CrossRef]
- Shang, Z.H.; Ma, Y.S.; Long, R.J.; Ding, L.M. Effect of fencing, artificial seeding and abandonment on vegetation composition and dynamics of ‘black soil land’ in the headwaters of the Yangtze and the Yellow Rivers of the Qinghai-Tibetan Plateau. Land Degrad. Dev. 2008, 19, 554–563. [Google Scholar] [CrossRef]
- Yirdaw, E.; Monge, A. Reconsidering what enclosure and exclosure mean in restoration ecology. Restor. Ecol. 2018, 26, 45–47. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.-L.; Du, G.-Z.; Liu, Z.-H.; Thirgood, S. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant Soil 2008, 319, 115–126. [Google Scholar] [CrossRef]
- Oba, G.; Vetaas, O.R.; Stenseth, N.C. Relationships between biomass and plant species richness in arid-zone grazing lands. J. Appl. Ecol. 2001, 38, 836–845. [Google Scholar] [CrossRef]
- Petchey, O.L.; Gaston, K.J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 2002, 5, 402–411. [Google Scholar] [CrossRef]
- Osem, Y.; Perevolotsky, A.; Kigel, J. Grazing effect on diversity of annual plant communities in a semi-arid rangeland: interactions with small-scale spatial and temporal variation in primary productivity. J. Ecol. 2002, 90, 936–946. [Google Scholar] [CrossRef]
- Shang, Z.-H.; Deng, B.; Ding, L.-M.; Ren, G.-H.; Xin, G.-S.; Liu, Z.-Y.; Wang, Y.-L.; Long, R.-J. The effects of three years of fencing enclosure on soil seed banks and the relationship with above-ground vegetation of degraded alpine grasslands of the Tibetan plateau. Plant Soil 2013, 364, 229–244. [Google Scholar] [CrossRef]
- Ye, L.; Tang, H.; Van Ranst, E. The role of quantitative land evaluation in food security decision-making in China: The past, present and future. Bull. Séanc. Acad. R. Sci. Outre-Mer 2017, 61, 415–434. [Google Scholar]
- Oliva, G.; Cibils, A.; Borrelli, P.; Humano, G. Stable states in relation to grazing in Patagonia: a 10-year experimental trial. J. Arid Environ. 1998, 40, 113–131. [Google Scholar] [CrossRef]
- Yan, Y.; Tang, H.; Xin, X.; Wang, X. Advances in research on the effects of exclosure on grasslands. Acta Ecol. Sin. 2009, 29, 5039–5046. [Google Scholar]
- Deng, L.; Zhang, Z.; Shangguan, Z. Long-term fencing effects on plant diversity and soil properties in China. Soil Tillage Res. 2014, 137, 7–15. [Google Scholar] [CrossRef]
- Park, K.H.; Qu, Z.Q.; Wan, Q.Q.; Ding, G.D.; Wu, B. Effects of enclosures on vegetation recovery and succession in Hulunbeier steppe, China. Sci. Technol. 2013, 9, 25–32. [Google Scholar] [CrossRef]
- Belsky, A.J. Effects of grazing, competition, disturbance and fire on species composition and diversity in grassland communities. J. Veg. Sci. 1992, 3, 187–200. [Google Scholar] [CrossRef]
- Xu, L.; Xu, X.; Tang, X.; Xin, X.; Ye, L.; Yang, G.; Tang, H.; Lv, S.; Xu, D.; Zhang, Z. Managed grassland alters soil N dynamics and N2O emissions in temperate steppe. J. Environ. Sci. 2018, 66, 20–30. [Google Scholar] [CrossRef]
- Yao, Y.; Ye, L.; Tang, H.; Tang, P.; Wang, D.; Si, H.; Hu, W.; Van Ranst, E. Cropland soil organic matter content change in Northeast China, 1985–2005. Open Geosci. 2015, 7, 234–243. [Google Scholar] [CrossRef]
- Ye, L.; Tang, H.; Zhu, J.; Verdoodt, A.; Van Ranst, E. Spatial patterns and effects of soil organic carbon on grain productivity assessment in China. Soil Use Manag. 2008, 24, 80–91. [Google Scholar] [CrossRef]
- Kent, M. Vegetation Description and Data Analysis: A Practical Approach, 2nd ed.; Wiley-Blackwell: Chichester, West Sussex, UK, 2012; p. 414. [Google Scholar]
- Spellerberg, I.F.; Fedor, P.J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon-Wiener’ Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [Google Scholar] [CrossRef] [Green Version]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D.; et al. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef] [Green Version]
- Van Dyke, F. Conservation Biology: Foundations, Concepts, Applications, 2nd ed.; Springer: Dordrecht, The Netherlands, 2008; p. 478. [Google Scholar] [CrossRef]
- Yeom, D.-J.; Kim, J.H. Comparative evaluation of species diversity indices in the natural deciduous forest of Mt. Jeombong. Sci. Technol. 2011, 7, 68–74. [Google Scholar] [CrossRef]
- Lezama, F.; Baeza, S.; Altesor, A.; Cesa, A.; Chaneton, E.J.; Paruelo, J.M.; De Cáceres, M. Variation of grazing-induced vegetation changes across a large-scale productivity gradient. J. Veg. Sci. 2014, 25, 8–21. [Google Scholar] [CrossRef]
- Jia, Z.; Ma, X.; Xu, C.; Liu, W.; Wei, X.; Lei, S. Effects of short-term enclosure on the vegetation characteristics of slightly degraded alpine meadow in Guinan County. Acta Pratacul. Sin. 2019, 36, 2766–2774. [Google Scholar]
- Mao, S.; Wu, Q.; Zhu, J.; Li, H.; Zhang, F.; Li, Y. Response of the maintain performance in alpine grassland to enclosure on the northern Tibetan Plateau. Acta Pratacul. Sin. 2015, 24, 21–30. [Google Scholar]
- Fırıncıoğlu, H.K.; Seefeldt, S.S.; Şahin, B. The effects of long-term grazing exclosures on range plants in the central Anatolian region of Turkey. Environ. Manag. 2007, 39, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fan, J.; Li, Y.; Huang, L. Effects of grazing exclusion on biomass growth and species diversity among various grassland types of the Tibetan Plateau. Sustainability 2019, 11, 1705. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, B.J.; Wright, J.P.; Cadotte, M.W.; Carroll, I.T.; Hector, A.; Srivastava, D.S.; Loreau, M.; Weis, J.J. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. USA 2007, 104, 18123–18128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Han, X.; Wu, J.; Chen, Z.; Li, L. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 2004, 431, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Erktan, A.; McCormack, M.L.; Roumet, C. Frontiers in root ecology: recent advances and future challenges. Plant Soil 2018, 424, 1–9. [Google Scholar] [CrossRef]
- Ferguson, B.J.; Indrasumunar, A.; Hayashi, S.; Lin, M.-H.; Lin, Y.-H.; Reid, D.E.; Gresshoff, P.M. Molecular analysis of legume nodule development and autoregulation. J. Integr. Plant Biol. 2010, 52, 61–76. [Google Scholar] [CrossRef]
- Limpens, E.; Bisseling, T. Signaling in symbiosis. Curr. Opin. Plant Biol. 2003, 6, 343–350. [Google Scholar] [CrossRef]
- Altesor, A.; Oesterheld, M.; Leoni, E.; Lezama, F.; Rodríguez, C. Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecol. 2005, 179, 83–91. [Google Scholar] [CrossRef]
- Scurlock, J.M.O.; Johnson, K.; Olson, R.J. Estimating net primary productivity from grassland biomass dynamics measurements. Glob. Chang. Biol. 2002, 8, 736–753. [Google Scholar] [CrossRef] [Green Version]
- Dietzel, R.; Liebman, M.; Archontoulis, S. A deeper look at the relationship between root carbon pools and the vertical distribution of the soil carbon pool. Soil 2017, 3, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Antonsen, H.; Olsson, P.A. Relative importance of burning, mowing and species translocation in the restoration of a former boreal hayfield: responses of plant diversity and the microbial community. J. Appl. Ecol. 2005, 42, 337–347. [Google Scholar] [CrossRef]
- Ruiz-Jaen, M.C.; Aide, T.M. Restoration success: How is it being measured? Restor. Ecol. 2005, 13, 569–577. [Google Scholar] [CrossRef]
- Schröder, W.; Schmidt, G.; Schönrock, S. Modelling and mapping of plant phenological stages as bio-meteorological indicators for climate change. Env. Sci. Eur. 2014, 26, 5. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yang, X.; Jin, Y.; Yang, Z.; Huang, W.; Zhao, L.; Gao, T.; Yu, H.; Ma, H.; Qin, Z.; et al. Monitoring and analysis of grassland desertification dynamics using Landsat images in Ningxia, China. Remote Sens. Environ. 2013, 138, 19–26. [Google Scholar] [CrossRef]
- Nie, C.; Li, Y.; Niu, L.; Liu, Y.; Shao, R.; Xu, X.; Tian, Y. Soil respiration and its Q10 response to various grazing systems of a typical steppe in Inner Mongolia, China. PeerJ 2019, 7, e7112. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Wu, J.; Zhang, X.; Xue, J.; Liu, Z.; Han, X.; Huang, J. China’s new rural “separating three property rights” land reform results in grassland degradation: Evidence from Inner Mongolia. Land Use Policy 2018, 71, 170–182. [Google Scholar] [CrossRef]
- Chen, H.L.; Lewison, R.L.; An, L.; Tsai, Y.H.; Stow, D.; Shi, L.; Yang, S. Assessing the effects of payments for ecosystem services programs on forest structure and species biodiversity. Biodivers. Conserv. 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Ye, L. Comparative Study on Methodology of Land Production Potential; China Agricultural Science and Technology Press: Beijing, China, 1997; p. 301. [Google Scholar]
- Liu, M.; Dries, L.; Heijman, W.; Zhu, X.; Deng, X.; Huang, J. Land tenure reform and grassland degradation in Inner Mongolia, China. China Econ. Rev. 2019, 55, 181–198. [Google Scholar] [CrossRef]
- Tang, R.; Gavin, M.C. Degradation and re-emergence of the commons: The impacts of government policies on traditional resource management institutions in China. Environ. Sci. Policy 2015, 52, 89–98. [Google Scholar] [CrossRef]
- Dong, S.; Kassam, K.-A.S.; Tourrand, J.F.; Boone, R.B. Building Resilience of Human-Natural Systems of Pastoralism in the Developing World: Interdisciplinary Perspectives; Springer: Cham, Switzerland, 2016; p. 298. [Google Scholar]
Species | Enclosure Year | |||||||
---|---|---|---|---|---|---|---|---|
F3 | F5 | F7 | F9 | |||||
Inside | Outside | Inside | Outside | Inside | Outside | Inside | Outside | |
Leymus chinensis | 14.80 | 12.38 | 20.40 | 10.39 | 24.84 | 9.41 | 30.87 | 3.55 |
Stipa baicalensis | 5.44 | 3.23 | 6.38 | 3.69 | 6.88 | 1.44 | 7.39 | 2.79 |
Heteropappus altaicuc | 1.01 | 0.17 | 0.27 | 0.81 | 0.76 | – | 0.48 | – |
Thalictrum petaloideum | 1.82 | 0.99 | 0.69 | 2.70 | 0.31 | 0.07 | 0.78 | 0.66 |
Melissilus ruthenica | 5.64 | 2.23 | 0.49 | 0.96 | 0.03 | 1.25 | – | 1.34 |
Bupleurum scorzonerifolium | 1.86 | 0.68 | 0.73 | 1.44 | 0.96 | – | 0.77 | 0.47 |
Artemisia frigida | 1.14 | 1.61 | 1.07 | 1.18 | 0.25 | 0.45 | 0.11 | 1.66 |
Potentilla bifurca | 0.92 | 1.00 | 0.27 | 2.08 | 1.26 | 2.47 | 1.30 | 1.93 |
Artemisia laciniate | 7.99 | 9.34 | 7.86 | 7.12 | 8.98 | 0.68 | 7.34 | 5.26 |
Serratula komarovii | 7.21 | 3.54 | 4.98 | 5.02 | 3.73 | 0.91 | 6.18 | 2.17 |
Galium verum | 1.90 | 1.25 | 4.22 | 1.51 | 2.40 | – | 2.10 | – |
Carex pediformis | 11.56 | 10.70 | 6.28 | 9.72 | 11.12 | 0.27 | 12.71 | 3.00 |
Adenophora stenanthina | 2.54 | 1.95 | 4.32 | 2.13 | 3.08 | 0.31 | 3.90 | 1.28 |
Carex duriuscula | 2.01 | 9.67 | 9.60 | 10.78 | 4.59 | 46.06 | 0.63 | 20.89 |
Palsatilla turczaninovii | 6.47 | 3.99 | 6.69 | 11.35 | 2.82 | 0.16 | 2.93 | 4.69 |
Cleistogenes squarrosa | 1.64 | 5.27 | 3.44 | 2.68 | 0.45 | 4.19 | 0.48 | 11.31 |
Achnatherum sibiricum | 2.15 | – | 1.29 | 1.02 | 1.84 | 2.44 | 5.13 | 4.39 |
Iris ventricosa | 2.13 | 1.73 | 0.29 | 1.08 | 2.41 | 0.30 | – | – |
Thalictrum squarrosum | 1.81 | 1.02 | 5.27 | 3.30 | 8.01 | 0.06 | 3.66 | – |
Koeleria cristata | – | 1.84 | – | 3.44 | 1.26 | 0.19 | – | 3.54 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Nie, Y.; Chen, B.; Xin, X.; Yang, G.; Xu, D.; Ye, L. Effects of Fence Enclosure on Vegetation Community Characteristics and Productivity of a Degraded Temperate Meadow Steppe in Northern China. Appl. Sci. 2020, 10, 2952. https://doi.org/10.3390/app10082952
Xu L, Nie Y, Chen B, Xin X, Yang G, Xu D, Ye L. Effects of Fence Enclosure on Vegetation Community Characteristics and Productivity of a Degraded Temperate Meadow Steppe in Northern China. Applied Sciences. 2020; 10(8):2952. https://doi.org/10.3390/app10082952
Chicago/Turabian StyleXu, Lijun, Yingying Nie, Baorui Chen, Xiaoping Xin, Guixia Yang, Dawei Xu, and Liming Ye. 2020. "Effects of Fence Enclosure on Vegetation Community Characteristics and Productivity of a Degraded Temperate Meadow Steppe in Northern China" Applied Sciences 10, no. 8: 2952. https://doi.org/10.3390/app10082952
APA StyleXu, L., Nie, Y., Chen, B., Xin, X., Yang, G., Xu, D., & Ye, L. (2020). Effects of Fence Enclosure on Vegetation Community Characteristics and Productivity of a Degraded Temperate Meadow Steppe in Northern China. Applied Sciences, 10(8), 2952. https://doi.org/10.3390/app10082952