Removal of Organic Micro-Pollutants by Conventional Membrane Bioreactors and High-Retention Membrane Bioreactors
Abstract
:1. Introduction
1.1. Occurrence, Fate and Transport of OMPs in WWTPs and Impact on Human and Environment
1.2. Mitigation and Litigation of OMPs
1.3. Membrane Bioreactors in Organic Micropollutants Removal
2. MBR Types and Configuration
2.1. Aerobic Membrane Bioreactors in OMPs Removal
2.2. Anaerobic MBR (AnMBR) for OMPs Removal
3. High Retention Membrane Bioreactors (HRMBR)
3.1. Osmotic Membrane Bioreactor (OMBR) for OMPs Removal
3.2. Membrane Distillation Bioreactor (MDBR) for OMPs Removal
4. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Tran, V.S.; Ngo, H.H.; Guo, W.; Zhang, J.; Liang, S.; Ton-That, C.; Zhang, X. Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Bioresour. Technol. 2015, 182, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Hai, F.I.; Price, W.E.; Elimelech, M.; Nghiem, L.D. Evaluating ionic organic draw solutes in osmotic membrane bioreactors for water reuse. J. Membr. Sci. 2016, 514, 636–645. [Google Scholar] [CrossRef] [Green Version]
- Morrow, C.P.; Furtaw, N.M.; Murphy, J.R.; Achilli, A.; Marchand, E.A.; Hiibel, S.R.; Childress, A.E. Integrating an aerobic/anoxic osmotic membrane bioreactor with membrane distillation for potable reuse. Desalination 2018, 432, 46–54. [Google Scholar] [CrossRef]
- Ma, X.Y.; Li, Q.; Wang, X.C.; Wang, Y.; Wang, D.; Ngo, H.H. Micropollutants removal and health risk reduction in a water reclamation and ecological reuse system. Water Res. 2018, 138, 272–281. [Google Scholar] [CrossRef]
- Luo, W.; Phan, H.V.; Xie, M.; Hai, F.I.; Price, W.E.; Elimelech, M.; Nghiem, L.D. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal. Water Res. 2017, 109, 122–134. [Google Scholar] [CrossRef]
- Zhang, B.; Song, X.; Nghiem, L.D.; Li, G.; Luo, W. Osmotic membrane bioreactors for wastewater reuse: Performance comparison between cellulose triacetate and polyamide thin film composite membranes. J. Membr. Sci. 2017, 539, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Bodzek, M.; Konieczny, K. Membranes in organic micropollutants removal. Current Org. Chem. 2018, 22, 1070–1102. [Google Scholar] [CrossRef]
- Hamza, R.A.; Iorhemen, O.T.; Tay, J.H. Occurrence, impacts and removal of emerging substances of concern from wastewater. Environ. Technol. Innov. 2016, 5, 161–175. [Google Scholar] [CrossRef]
- Tran, N.H.; Gin, K.Y.-H. Occurrence and removal of pharmaceuticals, hormones, personal care products, and endocrine disrupters in a full-scale water reclamation plant. Sci. Total Environ. 2017, 599, 1503–1516. [Google Scholar] [CrossRef]
- Priac, A.; Morin-Crini, N.; Druart, C.; Gavoille, S.; Bradu, C.; Lagarrigue, C.; Torri, G.; Winterton, P.; Crini, G. Alkylphenol and alkylphenol polyethoxylates in water and wastewater: A review of options for their elimination. Arabian J. Chem. 2017, 10, S3749–S3773. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosma, C.I.; Lambropoulou, D.A.; Albanis, T.A. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. J. Hazard. Mater. 2010, 179, 804–817. [Google Scholar] [CrossRef] [PubMed]
- Curcio, E.; Profio, G.D.; Fontananova, E.; Drioli, E. Membrane technologies for seawater desalination and brackish water treatment. In Advances in Membrane Technologies for Water Treatment: Materials, Processes and Applications; Woodhead Publishing Series in Energy: Oxford, UK, 2015; pp. 411–441. [Google Scholar]
- Wei, C.-H.; Wang, N.; HoppeJones, C.; Leiknes, T.; Amy, G.; Fang, Q.; Hu, X.; Rong, H. Organic micropollutants removal in sequential batch reactor followed by nanofiltration from municipal wastewater treatment. Bioresour. Technol. 2018, 268, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; He, Y.; Jekel, M.; Reinhard, M.; Gin, K.Y.-H. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ. Int. 2014, 71, 46–62. [Google Scholar] [CrossRef]
- Barbosa, M.O.; Moreira, N.F.F.; Ribeiro, A.R.; Pereira, M.F.R.; Silva, A.M.T. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Res. 2016, 94, 257–279. [Google Scholar] [CrossRef]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2014, 72, 3–27. [Google Scholar] [CrossRef]
- Zheng, W.; Wen, X.; Zhang, B.; Qiu, Y. Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant. Sci. Total Environ. 2019, 646, 1293–1303. [Google Scholar] [CrossRef]
- Song, H.L.; Yang, X.L.; Xia, M.Q.; Chen, M. Co-metabolic degradation of steroid estrogens by heterotrophic bacteria and nitrifying bacteria in MBRs. J. Environ. Sci. Health Part A 2017, 52, 778–784. [Google Scholar] [CrossRef]
- Asif, M.B.; Nguyen, L.N.; Hai, F.I.; Price, W.E.; Nghiem, L.D. Integration of an enzymatic bioreactor with membrane distillation for enhanced biodegradation of trace organic contaminants. Int. Biodeterior. Biodegrad. 2017, 124, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Lloret, L.; Eibes, G.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Degradation of estrogens by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors. J. Hazard. Mater. 2012, 213–214, 175–183. [Google Scholar] [CrossRef]
- Kidd, K.A.; Blanchfield, P.J.; Mills, K.H.; Palace, V.P.; Evans, R.E.; Lazorchak, J.M.; Flick, R.W. Collapse of a fish population after exposure to a synthetic estrogen. Proc. Natl. Acad. Sci. USA 2007, 104, 8897–8901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enfrin, M.; Dumée, L.F.; Lee, J. Nano/microplastics in water and wastewater treatment processes – Origin, impact and potential solutions. Water Res. 2019, 161, 621–638. [Google Scholar] [CrossRef]
- Cao, X.; Luo, J.; Woodley, J.M.; Wan, Y. Mussel-inspired co-deposition to enhance bisphenol A removal in a bifacial enzymatic membrane reactor. Chem. Eng. J. 2018, 336, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Ribaudo, M.; Bouzaher, A. Atrazine: Environmental Characteristics and Economics of Management. 1994; Available online: https://ideas.repec.org/p/ags/uerser/34011.html (accessed on 18 January 2020).
- Alvarino, T.; Suarez, S.; Lema, J.; Omil, F. Understanding the sorption and biotransformation of organic micropollutants in innovative biological wastewater treatment technologies. Sci. Total Environ. 2018, 615, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Abegglen, C.; Joss, A.; McArdell, C.S.; Fink, G.; Schlüsener, M.P.; Ternes, T.A.; Siegrist, H. The fate of selected micropollutants in a single-house MBR. Water Res. 2009, 43, 2036–2046. [Google Scholar] [CrossRef]
- Einsiedl, F.; Radke, M.; Maloszewski, P. Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants. J. Contam. Hydrol. 2010, 117, 26–36. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Hai, F.I.; Price, W.E.; Kang, J.; Leusch, F.D.; Roddick, F.; van de Merwe, J.P.; Magram, S.F.; Nghiem, L.D. Degradation of a broad spectrum of trace organic contaminants by an enzymatic membrane reactor: Complementary role of membrane retention and enzymatic degradation. Int. Biodeterior. Biodegrad. 2015, 99, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Huang, H.; Sun, Y.; Wang, C.; Shi, X.; Hu, H.; Kameya, T.; Fujie, K. Occurrence of estrogenic endocrine disrupting chemicals concern in sewage plant effluent. Front. Environ. Sci. Eng. 2014, 8, 18–26. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bhattacharya, P.; Jana, A.; Bhattacharya, S.; Sarkar, S.; Ghosh, S.; Majumdar, S.; Swarnakar, S. Synthesis of ceramic ultrafiltration membrane and application in membrane bioreactor process for pesticide remediation from wastewater. Process Saf. Environ. Prot. 2018, 116, 22–33. [Google Scholar] [CrossRef]
- Bezbaruah, A.N.; Thompson, J.M.; Chisholm, B.J. Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2009, 44, 518–524. [Google Scholar] [CrossRef]
- Long, M.; EsraIlhan, Z.; Xia, S.; Zhou, C.; Rittmann, B.E. Complete dechlorination and mineralization of pentachlorophenol (PCP) in a hydrogen-based membrane biofilm reactor (MBfR). Water Res. 2018, 144, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Chtourou, M.; Mallek, M.; Dalmau, M.; Mamo, J.; Santos-Clotas, E.; Salah, A.B.; Walha, K.; Salvadó, V.; Monclús, H. Triclosan, carbamazepine and caffeine removal by activated sludge system focusing on membrane bioreactor. Process Saf. Environ. Prot. 2018, 118, 1–9. [Google Scholar] [CrossRef]
- Goh, S.; Zhang, J.; Liu, Y.; Fane, A.G. Membrane distillation bioreactor (MDBR)—A lower green-house-gas (GHG) option for industrial wastewater reclamation. Chemosphere 2015, 140, 129–142. [Google Scholar] [CrossRef]
- Holloway, R.W.; Regnery, J.; Nghiem, L.D.; Cath, T.Y. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor. Environ. Sci. Technol. 2014, 48, 10859–10868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.C.; Chen, S.S.; Nguyen, H.T.; Ray, S.S.; Ngo, H.H.; Guo, W.; Lin, P.H. Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment. Water Res. 2016, 91, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Singhal, N.; Perez-Garcia, O. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes. Front. Environ. Sci. 2016, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Vásquez, E.; Trapote, A.; Prats, D. Elimination of pesticides with a membrane bioreactor and two different sludge retention times. Tecnol. Y Cienc. Del. Agua 2018, 9, 198–212. [Google Scholar] [CrossRef]
- Prasertkulsak, S.; Chiemchaisri, C.; Chiemchaisri, W.; Yamamoto, K. Removals of pharmaceutical compounds at different sludge particle size fractions in membrane bioreactors operated under different solid retention times. J. Hazard. Mater. 2019, 368, 124–132. [Google Scholar] [CrossRef]
- Kruglova, A.; Kråkström, M.; Riska, M.; Mikola, A.; Rantanen, P.; Vahala, R.; Kronberg, L. Comparative study of emerging micropollutants removal by aerobic activated sludge of large laboratory-scale membrane bioreactors and sequencing batch reactors under low-temperature conditions. Bioresour. Technol. 2016, 214, 81–88. [Google Scholar] [CrossRef]
- El Kateb, M.; Trellu, C.; Darwich, A.; Rivallin, M.; Bechelany, M.; Nagarajan, S.; Lacour, S.; Bellakhal, N.; Lesage, G.; Héran, M. Electrochemical advanced oxidation processes using novel electrode materials for mineralization and biodegradability enhancement of nanofiltration concentrate of landfill leachates. Water Res. 2019, 162, 446–455. [Google Scholar] [CrossRef]
- Calero-Díaz, G.; Monteoliva-García, A.; Leyva-Díaz, J.C.; López-López, C.; Martín-Pascual, J.; Torres, J.C.; Poyatos, J.M. Impact of ciprofloxacin, carbamazepine and ibuprofen on a membrane bioreactor system: Kinetic study and biodegradation capacity. J. Chem. Technol. Biotechnol. 2017, 92, 2944–2951. [Google Scholar] [CrossRef]
- Besha, A.T.; Gebreyohannes, A.Y.; Tufa, R.A.; Bekele, D.N.; Curcio, E.; Giorno, L. Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropollutants on membrane fouling: A review. J. Environ. Chem. Eng. 2017, 5, 2395–2414. [Google Scholar] [CrossRef]
- Ibrahim, R.S.; Yuniarto, A.; Kamaruddin, S.N. The outlook on future MBR technologies. In Sustainable Water Treatment: Innovative Technologies; CRC Press LLC, Taylor & Francis Group: Boca Raton, FL, USA, 2017; pp. 81–92. [Google Scholar]
- More, A. Membrane Bioreactor (MBR) Market 2019 Global industry Size, Growth, Segments, Revenue, Manufacturers and 2025 Forecast Research Report; The Express Wire: Riverside, CA, USA, 2019. [Google Scholar]
- Hai, F.I.; Yamamoto, K.; Lee, C.-H. Membrane Biological Reactors: Theory, Modeling, Design, Management and Applications to Wastewater Reuse; Iwa Publishing: London, UK, 2018. [Google Scholar]
- Mutamim, N.S.A.; Noor, Z.Z. Removal of micro-pollutants from wastewater through mbr technologies: A case study on spent caustic wastewater. In Sustainable Water Treatment: Innovative Technologies; CRC Press LLC, Taylor & Francis Group: Boca Raton, FL, USA, 2017; pp. 67–80. [Google Scholar] [CrossRef]
- Yeo, B.J.L.; Goh, S.; Zhang, J.; Livingston, A.G.; Fane, A.G. Novel MBRs for the removal of organic priority pollutants from industrial wastewaters: A review. J. Chem. Technol. Biotechnol. 2015, 90, 1949–1967. [Google Scholar] [CrossRef]
- Asif, M.B.; Ansari, A.J.; Chen, S.S.; Nghiem, L.D.; Price, W.E.; Hai, F.I. Understanding the mechanisms of trace organic contaminant removal by high retention membrane bioreactors: A critical review. Environ. Sci. Pollut. Res. 2019, 26, 34085–34100. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.H.; Urase, T.; Ngo, H.H.; Hu, J.; Ong, S.L. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour. Technol. 2013, 146, 721–731. [Google Scholar] [CrossRef]
- Mert, B.K.; Ozengin, N.; Dogan, E.C.; Aydıner, C. Efficient Removal Approach of Micropollutants in Wastewater Using Membrane Bioreactor. IntechOpen: London, UK, 2018; pp. 42–69. [Google Scholar]
- Giwa, A.; Dindi, A.; Kujawa, J. Membrane bioreactors and electrochemical processes for treatment of wastewaters containing heavy metal ions, organics, micropollutants and dyes: Recent developments. J. Hazard. Mater. 2019, 370, 172–195. [Google Scholar] [CrossRef]
- Mutamim, N.S.A.; Noor, Z.Z.; Hassan, M.A.A.; Yuniarto, A.; Olsson, G. Membrane bioreactor: Applications and limitations in treating high strength industrial wastewater. Chem. Eng. J. 2013, 225, 109–119. [Google Scholar] [CrossRef]
- Radjenović, J.; Matošić, M.; Mijatović, I.; Petrović, M.; Barceló, D. Membrane bioreactor (MBR) as an advanced wastewater treatment technology. In Handbook of Environmental Chemistry, Volume 5: Water Pollution; Springer: Berlin/Heidelberg, Germany, 2018; Volume 5, S2, pp. 37–101. [Google Scholar]
- Melin, T.; Jefferson, B.; Bixio, D.; Thoeye, C.; De Wilde, W.; De Koning, J.; van der Graaf, J.; Wintgens, T. Membrane bioreactor technology for wastewater treatment and reuse. Desalination 2006, 187, 271–282. [Google Scholar] [CrossRef]
- Cinar, O.; Kizile, A.; Isik, O.; Ćemanovi, A.; Vera, M.A.; Duman, S. A review on dynamic membrane bioreactors: Comparison of membrane bioreactors and different support materials, transmembrane pressure. In Proceedings of the International Conference on Engineering and Natural Sciences (ICENS), Sarajevo, Bosnia, 24–28 May 2016. [Google Scholar]
- Wang, X.; Chang, V.W.C.; Tang, C.Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: Advances, challenges, and prospects for the future. J. Membr. Sci. 2016, 504, 113–132. [Google Scholar] [CrossRef]
- Judd, S. The status of membrane bioreactor technology. Trends Biotechnol. 2008, 26, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, Z.; Wu, Z.; Mai, S. Fouling behaviours of two membranes in a submerged membrane bioreactor for municipal wastewater treatment. J. Membr. Sci. 2011, 382, 60–69. [Google Scholar] [CrossRef]
- Cornelissen, E.; Harmsen, D.; Dekorte, K.; Ruiken, C.; Qin, J.; Oo, H.; Wessels, L. Membrane fouling and process performance of forward osmosis membranes on activated sludge. J. Membr. Sci. 2008, 319, 158–168. [Google Scholar] [CrossRef]
- Bui, X.T.; Vo, T.P.T.; Ngo, H.H.; Guo, W.S.; Nguyen, T.T. Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Sci. Total Environ. 2016, 563–564, 1050–1067. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Fonseca Couto, C.; Lange, L.C.; Santos Amaral, M.C. A critical review on membrane separation processes applied to remove pharmaceutically active compounds from water and wastewater. J. Water Process Eng. 2018, 26, 156–175. [Google Scholar] [CrossRef]
- Neoh, C.H.; Noor, Z.Z.; Sing, C.L.I.; Mulok, F.L.M.; Sabli, N.S.M. Integration of membrane bioreactor with various wastewater treatment systems. In Sustainable Water Treatment: Innovative Technologies; CRC Press LLC, Taylor & Francis Group: Boca Raton, FL, USA, 2017; pp. 93–110. [Google Scholar]
- Rodríguez, F.A.; Poyatos, J.M.; Reboleiro-Rivas, P.; Osorio, F.; González-López, J.; Hontoria, E. Kinetic study and oxygen transfer efficiency evaluation using respirometric methods in a submerged membrane bioreactor using pure oxygen to supply the aerobic conditions. Bioresour. Technol. 2011, 102, 6013–6018. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Thomaidis, N.S.; Xu, J. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. J. Hazard. Mater. 2017, 323, 274–298. [Google Scholar] [CrossRef]
- Luo, Y.; Jiang, Q.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Price, W.E.; Wang, J.; Guo, W. Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system. Bioresour. Technol. 2015, 191, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Yamashita, N.; Park, C.; Shimono, T.; Takeuchi, D.M.; Tanaka, H. Removal characteristics of pharmaceuticals and personal care products: Comparison between membrane bioreactor and various biological treatment processes. Chemosphere 2017, 179, 347–358. [Google Scholar] [CrossRef]
- Alvarino, T.; Torregrosa, N.; Omil, F.; Lema, J.M.; Suarez, S. Assessing the feasibility of two hybrid MBR systems using PAC for removing macro and micropollutants. J. Environ. Manag. 2017, 203, 831–837. [Google Scholar] [CrossRef]
- Phan, H.V.; Hai, F.I.; McDonald, J.A.; Khan, S.J.; Zhang, R.; Price, W.E.; Broeckmann, A.; Nghiem, L.D. Nutrient and trace organic contaminant removal from wastewater of a resort town: Comparison between a pilot and a full scale membrane bioreactor. Int. Biodeterior. Biodegrad. 2015, 102, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Prasertkulsak, S.; Chiemchaisri, C.; Chiemchaisri, W.; Itonaga, T.; Yamamoto, K. Removals of pharmaceutical compounds from hospital wastewater in membrane bioreactor operated under short hydraulic retention time. Chemosphere 2016, 150, 624–631. [Google Scholar] [CrossRef]
- Hamon, P.; Moulin, P.; Ercolei, L.; Marrot, B. Oncological ward wastewater treatment by membrane bioreactor: Acclimation feasibility and pharmaceuticals removal performances. J. Water Process Eng. 2018, 21, 9–26. [Google Scholar] [CrossRef] [Green Version]
- Abargues, M.R.; Robles, A.; Bouzas, A.; Seco, A. Micropollutants removal in an anaerobic membrane bioreactor and in an aerobic conventional treatment plant. Water Sci. Technol. 2012, 65, 2242–2250. [Google Scholar] [CrossRef]
- Wijekoon, K.C.; Hai, F.I.; Kang, J.; Price, W.E.; Guo, W.; Ngo, H.H.; Cath, T.Y.; Nghiem, L.D. A novel membrane distillation–thermophilic bioreactor system: Biological stability and trace organic compound removal. Bioresour. Technol. 2014, 159, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Hai, F.I.; Kang, J.; Price, W.E.; Nghiem, L.D.; Elimelech, M. The role of forward osmosis and microfiltration in an integrated osmotic-microfiltration membrane bioreactor system. Chemosphere 2015, 136, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarino, T.; Suarez, S.; Lema, J.; Omil, F. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors. J. Hazard. Mater. 2014, 278, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Arola, K.; Hatakka, H.; Mänttäri, M.; Kallioinen, M. Novel process concept alternatives for improved removal of micropollutants in wastewater treatment. Sep. Purif. Technol. 2017, 186, 333–341. [Google Scholar] [CrossRef]
- Sahar, E.; Messalem, R.; Cikurel, H.; Aharoni, A.; Brenner, A.; Godehardt, M.; Jekel, M.; Ernst, M. Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR). Water Res. 2011, 45, 4827–4836. [Google Scholar] [CrossRef]
- Alvarino, T.; Allegue, T.; Fernandez-Gonzalez, N.; Suarez, S.; Lema, J.M.; Garrido, J.M.; Omil, F. Minimization of dissolved methane, nitrogen and organic micropollutants emissions of effluents from a methanogenic reactor by using a preanoxic MBR post-treatment system. Sci. Total Environ. 2019, 671, 165–174. [Google Scholar] [CrossRef]
- Song, X.; Luo, W.; Hai, F.I.; Price, W.E.; Guo, W.; Ngo, H.H.; Nghiem, L.D. Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges. Bioresour. Technol. 2018, 270, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Neoh, C.H.; Noor, Z.Z.; Mutamim, N.S.A.; Lim, C.K. Green technology in wastewater treatment technologies: Integration of membrane bioreactor with various wastewater treatment systems. Chem. Eng. J. 2016, 283, 582–594. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Luo, W.; McDonald, J.; Khan, S.J.; Hai, F.I.; Price, W.E.; Nghiem, L.D. An anaerobic membrane bioreactor – membrane distillation hybrid system for energy recovery and water reuse: Removal performance of organic carbon, nutrients, and trace organic contaminants. Sci. Total Environ. 2018, 628–629, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Ngo, H.H.; Chen, C.; Pandey, A.; Tung, K.-L.; Lee, D.-J. Anaerobic membrane bioreactors for future green bioprocesses. In Green Technologies for Sustainable Water Management; Cahpter 25; American Society of Civil Engineers: Reston, VI, USA, 2016; pp. 867–901. [Google Scholar]
- Lin, H.; Peng, W.; Zhang, M.; Chen, J.; Hong, H.; Zhang, Y. A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination 2013, 314, 169–188. [Google Scholar] [CrossRef]
- Alvarino, T.; Suárez, S.; Garrido, M.; Lema, J.; Omil, F. A UASB reactor coupled to a hybrid aerobic MBR as innovative plant configuration to enhance the removal of organic micropollutants. Chemosphere 2016, 144, 452–458. [Google Scholar] [CrossRef]
- Wijekoon, K.C.; McDonald, J.A.; Khan, S.J.; Hai, F.I.; Price, W.E.; Nghiem, L.D. Development of a predictive framework to assess the removal of trace organic chemicals by anaerobic membrane bioreactor. Bioresour. Technol. 2015, 189, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Luo, W.; McDonald, J.; Khan, S.J.; Hai, F.I.; Guo, W.; Ngo, H.H.; Nghiem, L.D. Effects of sulphur on the performance of an anaerobic membrane bioreactor: Biological stability, trace organic contaminant removal, and membrane fouling. Bioresour. Technol. 2018, 250, 171–177. [Google Scholar] [CrossRef]
- Monsalvo, V.M.; McDonald, J.A.; Khan, S.J.; Le-Clech, P. Removal of trace organics by anaerobic membrane bioreactors. Water Res. 2014, 49, 103–112. [Google Scholar] [CrossRef]
- Song, X.; McDonald, J.; Price, W.E.; Khan, S.J.; Hai, F.I.; Ngo, H.H.; Guo, W.; Nghiem, L.D. Effects of salinity build-up on the performance of an anaerobic membrane bioreactor regarding basic water quality parameters and removal of trace organic contaminants. Bioresour. Technol. 2016, 216, 399–405. [Google Scholar] [CrossRef]
- Hai, F.I.; Li, X.; Price, W.E.; Nghiem, L.D. Removal of carbamazepine and sulfamethoxazole by MBR under anoxic and aerobic conditions. Bioresour. Technol. 2011, 102, 10386–10390. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Phan, H.V.; Hai, F.I.; Price, W.E.; Guo, W.; Ngo, H.H.; Yamamoto, K.; Nghiem, L.D. Effects of salinity build-up on the performance and bacterial community structure of a membrane bioreactor. Bioresour. Technol. 2016, 200, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.V.; Hai, F.I.; Kang, J.; Dam, H.K.; Zhang, R.; Price, W.E.; Broeckmann, A.; Nghiem, L.D. Simultaneous nitrification/denitrification and trace organic contaminant (TrOC) removal by an anoxic–aerobic membrane bioreactor (MBR). Bioresour. Technol. 2014, 165, 96–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadkaew, N.; Hai, F.I.; McDonald, J.A.; Khan, S.J.; Nghiem, L.D. Removal of trace organics by MBR treatment: The role of molecular properties. Water Res. 2011, 45, 2439–2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, W.; Hai, F.I.; Price, W.E.; Guo, W.; Ngo, H.H.; Yamamoto, K.; Nghiem, L.D. High retention membrane bioreactors: Challenges and opportunities. Bioresour. Technol. 2014, 167, 539–546. [Google Scholar] [CrossRef]
- Achilli, A.; Cath, T.Y.; Marchand, E.A.; Childress, A.E. The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes. Desalination 2009, 239, 10–21. [Google Scholar] [CrossRef]
- Luo, W.; Phan, H.V.; Li, G.; Hai, F.I.; Price, W.E.; Elimelech, M.; Nghiem, L.D. An osmotic membrane bioreactor–membrane distillation system for simultaneous wastewater reuse and seawater desalination: Performance and implications. Environ. Sci. Technol. 2017, 51, 14311–14320. [Google Scholar] [CrossRef]
- Holloway, R.W.; Achilli, A.; Cath, T.Y. The osmotic membrane bioreactor: A critical review. Environ. Sci. Water Res. Technol. 2015, 1, 581–605. [Google Scholar] [CrossRef]
- Lu, Y.; He, Z. Mitigation of salinity buildup and recovery of wasted salts in a hybrid osmotic membrane bioreactor–electrodialysis system. Environ. Sci. Technol. 2015, 49, 10529–10535. [Google Scholar] [CrossRef]
- Pathak, N.; Li, S.; Kim, Y.; Chekli, L.; Phuntsho, S.; Jang, A.; Ghaffour, N.; Leiknes, T.; Shon, H.K. Assessing the removal of organic micropollutants by a novel baffled osmotic membrane bioreactor-microfiltration hybrid system. Bioresour. Technol. 2018, 262, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Wang, X.; She, Q.; Li, X.; Ren, Y. Osmotic membrane bioreactors assisted with microfiltration membrane for salinity control (MF-OMBR) operating at high sludge concentrations: Performance and implications. Chem. Eng. J. 2018, 337, 576–583. [Google Scholar] [CrossRef]
- Lay, W.C.L.; Zhang, Q.; Zhang, J.; McDougald, D.; Tang, C.; Wang, R.; Liu, Y.; Fane, A.G. Effect of pharmaceuticals on the performance of a novel osmotic membrane bioreactor (OMBR). Sep. Sci. Technol. 2012, 47, 543–554. [Google Scholar] [CrossRef]
- Alturki, A.; McDonald, J.; Khan, S.J.; Hai, F.I.; Price, W.E.; Nghiem, L.D. Performance of a novel osmotic membrane bioreactor (OMBR) system: Flux stability and removal of trace organics. Bioresour. Technol. 2012, 113, 201–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, W.; Xie, M.; Song, X.; Guo, W.; Ngo, H.H.; Zhou, J.L.; Nghiem, L.D. Biomimetic aquaporin membranes for osmotic membrane bioreactors: Membrane performance and contaminant removal. Bioresour. Technol. 2018, 249, 62–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curcio, E.; Drioli, E. Membrane distillation and related operations—A review. Sep. Purif. Rev. 2005, 34, 35–86. [Google Scholar] [CrossRef]
- Phattaranawik, J.; Fane, A.G.; Pasquier, A.C.S.; Bing, W. A novel membrane bioreactor based on membrane distillation. Desalination 2008, 223, 386–395. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, Y.; Xu, Z.; Zhang, G. Advanced membrane bioreactors systems: New materials and hybrid process design. Bioresour. Technol. 2018, 269, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.B.; Hai, F.I.; Kang, J.; Van De Merwe, J.P.; Leusch, F.D.; Price, W.E.; Nghiem, L.D. Biocatalytic degradation of pharmaceuticals, personal care products, industrial chemicals, steroid hormones and pesticides in a membrane distillation-enzymatic bioreactor. Bioresour. Technol. 2018, 247, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Roos, V.; Gunnarsson, L.; Fick, J.; Larsson, D.G.J.; Rudén, C. Prioritising pharmaceuticals for environmental risk assessment: Towards adequate and feasible first-tier selection. Sci. Total Environ. 2012, 421–422, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Ojajuni, O.; Saroj, D.; Cavalli, G. Removal of organic micropollutants using membrane-assisted processes: A review of recent progress. Environ. Technol. Rev. 2015, 4, 17–37. [Google Scholar] [CrossRef]
- Huang, L.; Lee, D.J. Membrane bioreactor: A mini review on recent R&D works. Bioresour. Technol. 2015, 194, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Bodzek, M. Membrane technologies for the removal of micropollutants in water treatment. In Advances in Membrane Technologies for Water Treatment: Materials, Processes and Applications; Woodhead Publishing Series in Energy: Oxford, UK, 2015; pp. 465–517. [Google Scholar] [CrossRef]
- Pathak, N.; Chekli, L.; Wang, J.; Kim, Y.; Phuntsho, S.; Li, S.; Ghaffour, N.; Leiknes, T.; Shon, H. Performance of a novel baffled osmotic membrane bioreactor-microfiltration hybrid system under continuous operation for simultaneous nutrient removal and mitigation of brine discharge. Bioresour. Technol. 2017, 240, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, V.H.; Lim, S.; Han, D.S.; Pathak, N.; Akther, N.; Phuntsho, S.; Park, H.; Shon, H.K. Efficient fouling control using outer-selective hollow fiber thin-film composite membranes for osmotic membrane bioreactor applications. Bioresour. Technol. 2019, 282, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Ensano, B.M.B.; Borea, L.; Naddeo, V.; de Luna, M.D.G.; Belgiorno, V. Control of emerging contaminants by the combination of electrochemical processes and membrane bioreactors. Environ. Sci. Pollut. Res. 2019, 26, 1103–1112. [Google Scholar] [CrossRef]
- Lay, W.C.; Liu, Y.; Fane, A.G. Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: A review. Water Res. 2010, 44, 21–40. [Google Scholar] [CrossRef] [PubMed]
- Chekli, L.; Phuntsho, S.; Shon, H.K.; Vigneswaran, S.; Kandasamy, J.; Chanan, A. A review of draw solutes in forward osmosis process and their use in modern applications. Desalin. Water Treat. 2012, 43, 167–184. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Schäfer, A.I.; Elimelech, M. Removal of natural hormones by nanofiltration membranes: Measurement, modeling and mechanisms. Environ. Sci. Technol. 2004, 38, 1888–1896. [Google Scholar] [CrossRef]
Micropollutants | % Removal | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A-[5] | B-[68] | C-[68] | D-[69] | E-[70] | F-[71] | G-[71] | H-[72] | I-[73] | J-[74] | |||
MF | UF | SRT (∞) | SRT (27d) | |||||||||
17α-ethynylestradiol | 96 | 56 | 71 | - | - | - | - | - | - | - | - | 100 |
17β-estradiol | 98 | 93 | 94 | - | - | - | - | - | 100 | 100 | - | 100 |
4-n-nonylphenol | - | 90 | 90 | - | - | - | - | - | - | - | - | |
4-p-nonylphenol | - | - | - | - | - | - | - | - | - | - | - | 100 |
4-t-nonylphenol | - | - | - | - | - | - | - | - | - | - | - | 100 |
4-tert-Butylphenol | 98 | 55 | 62 | - | - | - | - | - | - | - | - | |
4-tert-Octylphenol | 97 | 82 | 84 | - | - | - | - | - | - | - | 100 | |
Acetaminophen | - | 90 | 90 | 95 | - | - | - | - | - | - | - | - |
Amitriptyline | 95 | - | - | - | - | - | 34 | - | - | - | - | - |
Androsterone | - | - | - | - | - | - | 98 | 98 | - | - | - | - |
Atenolol | - | - | - | 59 | - | - | 92 | 85 | - | - | - | - |
Atrazine | 30 | - | - | - | - | - | - | - | - | - | - | - |
Bezafibrate | - | - | - | 93 | - | - | - | - | - | - | - | - |
Benzophenone | 97 | - | - | - | - | - | - | - | - | - | - | - |
Bisphenol A | 96 | 39.9 | 80 | - | - | - | - | - | - | - | - | - |
Caffeine | - | - | - | 96 | - | - | 94 | 91 | - | - | - | - |
Carbamazepine | 70 | 16.2 | 21 | - | 94 | 92 | 2 | 1 | −94.5 | −6.8 | - | - |
Ciprofloxacin | - | - | - | 87 | - | - | - | - | - | - | - | - |
Codeine | - | - | - | - | - | - | - | - | - | - | 71.9 | - |
Cyclophosphamide | - | - | - | - | - | - | - | - | - | - | 59.5 | - |
DEET * | 90 | - | - | - | - | - | 97 | 84 | - | - | - | - |
Diazepamdzp | - | - | 2 | - | - | - | - | - | - | - | - | - |
Diclofenac | 70 | 42 | 43 | 36 | 80 | 90 | 57 | 15 | −50.1 | −270.2 | - | - |
Diltiazem | - | - | - | 58 | - | - | - | - | - | - | - | - |
Diuron | - | - | - | - | - | - | 96 | 25 | - | - | - | - |
Enterolactone | 91 | - | - | - | - | - | - | - | - | - | - | - |
Erythromycin | - | - | 98 | - | 98 | 100 | - | - | - | - | - | - |
Estradiol | - | - | - | - | 99 | 99 | - | - | - | - | - | - |
Estriol | 91 | 34.5 | 90 | - | - | - | - | - | - | - | - | - |
Estrone | 99 | 80 | 100 | - | - | - | 98 | 96 | - | - | - | 100 |
Ethinylestradiol | - | - | - | - | 92 | 93 | - | - | - | - | - | - |
Etiocholanolone | - | - | - | - | - | - | 98 | 98 | - | - | - | - |
Fenoprop | 60 | 25 | 26 | - | - | - | - | - | - | - | - | - |
Fluoxetine | - | - | 92 | - | - | - | - | - | - | - | - | - |
Gemfibrozil | 97 | 80 | 72 | - | - | - | 89 | 83 | 45.8 | −84.6 | - | - |
Ibuprofen | 99 | 90 | 98 | 91 | 92 | 97 | 95 | 100 | 100 | - | - | |
Ifosfamide | - | - | - | - | - | - | - | - | - | - | 49.3 | |
Ketoprofen | 96 | 30.1 | 72 | 87 | - | - | - | - | - | - | - | - |
Levofloxacin | - | - | - | 82 | - | - | - | - | - | - | - | - |
Mefenamic acid | - | - | - | 60 | - | - | - | - | - | - | - | - |
Metronidazole | 97 | 18 | 35 | - | - | - | - | - | - | - | - | |
Naproxen | 97 | 70 | 80 | 97 | 89 | 98 | 95 | 85 | 82.3 | 23.6 | - | - |
Octocrylene | 80 | - | - | - | - | - | - | - | - | - | - | - |
Paracetamol | - | - | - | - | - | - | 98 | 97 | - | - | - | - |
Pentachlorophenol | 91 | 80 | 80 | - | - | - | - | - | - | - | - | - |
Polyparaben | - | - | - | - | - | - | 97 | 97 | - | - | - | - |
Primidone | 58 | 31.9 | 69 | - | - | - | 13 | - | - | - | - | |
Roxithromycin | - | - | 96 | 51 | 98 | 100 | - | - | - | - | - | - |
Salicylic acid | 97 | 88 | 92 | - | - | - | - | - | - | - | - | - |
Sulfamethoxazole | - | - | 99 | - | 80 | 70 | 85 | 56 | 78.5 | −43.9 | 75 | |
Triclocarban | - | - | - | 95 | - | - | 51 | 94 | - | - | - | |
Triclosan | 98 | 92 | 97 | 94 | - | - | 62 | 60 | 100 | 100 | - | |
Trimethoprim | - | - | 99 | - | 97 | 91 | 64 | 55 | 80.1 | 24.6 | - | |
β-Estradiol-17-acetate | 97 | 92 | 94 | - | - | - | - | - | - | - | - | |
Type of Influent | Membrane with Operating Conditions | |||||||||||
A-[5] | Synthetic wastewater (MBR) | Lab-scale MBR, Hollow fiber polyvinylidene difluoride (PVDF) MF membrane with a pore size of 0.4 µm and area 0.074 m2, MLSS: 5 g/L, dissolved oxygen (DO): 5 mg/L, SRT: 20 d, HRT: 27 h. | ||||||||||
B-[68] | Synthetic wastewater (MBR) | PVDF hollow fiber microfiltration (MF) membrane modules pore size of 0.2 µm and surface area of 0.2 m2, HRT: 6 h, SRT: infinite, MLSS: 2.27–7.38 g/L | ||||||||||
C-[68] | Synthetic wastewater (MBBR + MBR) | PVDF hollow fiber MF membrane modules pore size of 0.2 µm and surface area of 0.2 m2 HRT: 24 h; SRT: infinite; MLSS: 2.27–7.38 g/L Polyurethane sponge cubes (S28/80R, Joyce Foam Products; dimension of 2 cm × 2 cm × 2 cm as biofilm carriers. | ||||||||||
D-[69] | Real WWTP South Korea Anoxic + aerobic | Submerged hollow fiber MF PVDF membrane, pore size of 0.4 µm, total surface area 0.04 m2, cycles of 7 min on and 1 min of relaxation. HRT: 11 h, Temperature: 25 °C, pH: 6.8, MLSS: 7–11 g/L. | ||||||||||
E-[70] | Synthetic wastewater (MBR + PAC) | A flat sheet membrane (Kubota, pore size 0.45 mm) MF PVDF membrane, the pore size of 0.4 µm and ultrafiltration (UF) hollow fiber membrane (Zenon ZW-20, pore size 0.045 mm), cycles of 7.5 min on and relaxation time of 1.25 min for MF, while 7 min on and backwashing of 0.5 min for UF, HRT: 24 h, Temperature 20–22 °C. pH: 7.5, MLSS: 3 g/L. | ||||||||||
F-[71] | Real wastewater (Full-scale plant MBR) | PVDF flat sheet MF membranes, total surface area 4800 m2, HRT: 1.5–1.7 d, SRT: 25 d, T: 20–22 °C, pH: 7.5, MLSS: 9 g/L. | ||||||||||
G-[71] | Real wastewater (Pilot-scale plant) (Anoxic-Aerobic MBR) | Hollow fiber UF membrane (Zeweed-10, pore size 0.04 µm, total surface area 0.93 m2, HRT: 1.5 d, SRT: 25 d, T: 20–22 °C, pH: 7.1–7.4, MLSS: 2.4 g/L, aerobic DO: 2.5–5 mg/L, p H 7.14, anoxic DO: 0.25 mg/L pH: 7.43, T: 18 °C | ||||||||||
H-[72] | Real WWTP Pilot-scale MBR set-up Bangkok, Thailand | PVDF Hollow fiber membrane, pore size 0.4 µm, total surface area 36 m2, 7 min on & 1 min off, HRT 3 h, SRT 27 d, MLSS 13 g/L, DO 1–4 mg/L, pH 6.8. | ||||||||||
I-[73] | Pilot scale MBR Hospital effluent (Marseille, France) | Hollow fiber Polysulfone membrane, 100 kDa MWCO, total surface area 0. 0.4 m2, HRT 16–40 h, SRT ∞ d, temperature 25 °C. MLSS 6.8 g/L, DO 2 mg/L, temperature 25 °C. | ||||||||||
J-[74] | MBR pilot plant Real wastewater | Hollow-fiber UF membrane module (Zenon, Zee-Weed® 500 modules), surface area 46.5 m2, HRT 9 h, SRT 100 d, MLSS 15 g/L. |
Feature | AnMBR | MBR |
---|---|---|
Energy consumption (kWh/m3) | 0.03–5.7 a | ∼2 b |
Biomass concentration (g/L) c | 10–40 | 5–20 |
Organic loading rate (kg COD/L/d) | 0.17–35.5 | 0.25–0.8 |
Organic removal efficiency (%) | >90 | >95 |
Hydraulic retention time (hours) | >8 | 4–8 |
Water flux, liters per square meter per hour (LMH) | 5–12 | 20–30 |
Sludge retention time (d) | >100 | 5–20 |
Operational temperature (°C) | 20–50 | 20–30 |
Micropollutants | % Removal | |||||||
---|---|---|---|---|---|---|---|---|
A-[87] | B-[88] | C-[89] | D-[90] | E-[74] | F-[86] | G-[80] | ||
17α-Estradiol | - | - | 27 | - | - | - | - | |
17α-Ethynylestradiol | - | - | 15 | - | 100 | - | - | |
17β-Estradiol | - | - | 60 | - | 100 | - | - | |
4-(tert-octyl)) phenol | - | - | - | - | 0 | - | - | |
4-p-nonylphenol | - | - | - | - | 0 | - | - | |
4-n-nonylphenol | 94 | 96 | - | - | - | - | - | |
Amitriptyline | 99 | 90 | 47 | 77 | - | - | - | |
Androstenedione | - | - | - | - | - | - | - | |
Androsterone | - | - | 16 | - | - | - | - | |
Aspartame | - | 91 | - | - | - | - | - | |
Atenolol | 77 | - | 98 | - | - | - | - | |
Atrazine | 32 | 32 | 6.8 | 4 | - | - | - | |
Bisoprolol | - | - | - | 30 | - | - | - | |
Benzophenone | - | 62 | - | - | - | - | - | |
Bisphenol A | 99 | 4 | 32 | 15 | - | - | 81 | |
Butylparaben | - | - | - | 81 | - | - | - | |
Caffeine | 90 | 60 | 77 | 20 | - | - | - | |
Carazolol | - | 50 | - | - | - | - | - | |
Carbamazepine | 50 | 10 | 4.8 | 4 | - | 38 | 10 | |
Celestolide | - | - | - | - | - | 48 | ||
Clozapine | 99 | 81 | 28 | 75 | - | - | - | |
DEET | 99 | 10 | 1.4 | 5 | - | - | - | |
Diazepam | 54 | 20 | - | 6 | - | 38 | 2 | |
Diazinon | 93 | 91 | - | 79 | - | - | - | |
Diclofenac | 3 | 5 | 1 | - | - | 40 | 23 | |
Dilantin | - | 6 | 21 | - | - | - | - | |
Diuron | 62 | 16 | - | 7 | - | - | - | |
EE2 | - | - | - | - | - | 12 | - | |
Erythromycin | - | - | - | - | - | 53 | 98 | |
Enalapril | - | - | 37 | 23 | - | - | - | |
Estradiol E2 | - | - | - | - | - | 59 | - | |
Estriol | - | - | 1 | - | - | - | - | |
Estrone | - | - | 1 | 100 | 82 | 100 | ||
Ethinylestradiol | - | - | - | - | - | 82 | - | |
Etiocholanolone | - | - | 52 | - | - | - | - | |
Fluoxetine | - | - | - | - | - | 22 | 92 | |
Galaxolide | - | - | - | - | - | 84 | - | |
Gemfibrozil | 18 | 11 | 13 | - | - | - | - | |
Hydroxyzine | - | 95 | 13 | - | - | - | - | |
Ibuprofen | 41 | 7 | 1 | 3 | - | 81 | 98 | |
Ketoprofen | 38 | 15 | 15 | - | - | - | - | |
Linuron | 88 | 90 | 11 | 62 | - | - | - | |
Meprobamate | - | 15 | 6.6 | - | - | - | - | |
Metformin | - | - | 99 | - | - | - | - | |
Naproxen | 75 | 51 | 70 | 40 | - | 92 | 77 | |
Nonylphenol | - | 96 | 99 | 80 | - | - | - | |
Octylphenol | - | - | 70 | - | - | - | - | |
Omeprazole | 99 | 97 | 20 | - | - | - | - | |
Oxybenzone | - | 98 | - | - | - | - | - | |
Paracetamol | 86 | 50 | 58 | 15 | - | - | - | |
PFOS | - | 64 | - | - | - | - | - | |
Phenylphenol | - | 57 | - | 42 | - | - | - | |
Primidone | 25 | - | 1.8 | 0 | - | - | - | |
Propylparaben | - | 70 | - | - | - | - | - | |
Roxithromycin | - | - | - | - | - | 42 | 96 | |
Simazine | 54 | 72 | - | 35 | - | - | - | |
Sucralose | - | - | - | 8 | - | - | - | |
Sulfamethoxazole | 99 | 95 | 95 | - | - | 99 | 99 | |
TCEP | - | 10 | - | 4 | - | - | - | |
Testosterone | - | - | 99 | - | - | - | - | |
t-nonylphenol | - | - | - | - | 0 | - | - | |
t-Octylphenol | - | 80 | - | 77 | - | - | - | |
Tonalide | - | - | - | - | - | 47 | - | |
Triamterene | 82 | 34 | - | - | - | - | - | |
Triclocarban | 95 | 89 | 37 | 71 | - | - | - | |
Triclosan | 70 | 62 | 90 | 59 | - | - | 97 | |
Trimethoprim | 98 | 82 | 35 | 94 | - | - | 99 | |
Verapamil | - | - | 99 | - | - | - | - | |
α-ethinylestradiol | - | - | - | - | - | - | 83 | |
β-estradiol | - | - | - | - | - | - | 100 | |
Wastewater | Membrane Type | HRT, SRT (d) | MLSS, MLVSS * (g/L) | T (°C) | Methane Yield | |||
A-[87] | Synthetic wastewater | External ceramic membrane module (NGK, Japan), pore size1 µm, surface area 0.09 m2, the cycle of 14 min on and 1 min off | 4, 180 | 10 | 35 | 0.2 L CH4/g COD, 61% CH4, 5.4 L/d. | ||
B-[88] | Synthetic wastewater | External ceramic membrane module (NGK, Japan), pore size 0.1 µm, surface area 0.09 m2, cycle of 14 min on and 1 min off | 5, 180 | 15, 10 | 35 | 0.2 L CH4/g COD (600 mg/L SO4 2-addition) | ||
C-[89] | Synthetic wastewater | Hollow-fiber membrane (Siemens Water Technologies, pore size 0.04 µm, total area of 0.0245 m2 | 0.25, 30 | Not measured | 30 | Not measured | ||
D-[90] | Synthetic wastewater | Side-stream MF membrane module (NGK, Japan), pore size 0.1 µm, effective area of 0.09 m2, 14 min suction and 1 min relaxation | 5, 140 | 16–22, 11.2 | 35 | 0.4–0.6 L/g COD, 58–65% CH4 | ||
E-[74] | Real wastewater pilot-plant (Valencia, Spain), | Hollow-fiber l ceramic UF membrane module (PURON® Koch Membrane Systems (PUR-PSH31), pore size 0.05 μm, effective area of 0.09 m2, 14 min suction and 1 min relaxation | 0.75–1, 80 | na | Room temp | |||
F-[86] | Synthetic wastewater UASB ** + aerobic MBR | Submerged hollow fiber membrane (ZW-10 Zenon UF module), the pore size of 0.04 μm surface area 0.9 m2, cycles of 7 min and 0.5 min of relaxation. Anaerobic temperature 20 to 22 °C. pH 7.5 | MBR 0.5, 60 UASB 0.5, na | |||||
G-[80] | Synthetic wastewater The pilot plant in Spain | Submerged HF membrane (ZW-10 Zenon UF module), the pore size of 0.04 μm, surface area 0.9 m2, cycles of 7 min and 0.5 min of relaxation. UASB p H 7.1 ± 0.2 | MBR 0.25 d, na UASB 0.75 | 6.9, 10.5 | 18.2–23.5 |
Wastewater | Membrane with Operating Conditions | Flux (LMH) | Salinity (g/L) | Micropollutants Investigated | % Removal | References |
---|---|---|---|---|---|---|
Synthetic Wastewater | Flat-sheet aquaporin FO membrane (Aquaporin Asia, Singapore), area 0.012 m2, 0.5 M NaCl DS *, SRT 20 d, temperature 22 °C, HRT 24–36 h, MLSS 6.8 g/L, DO 2 mg/L | 14–10 | 4 | Clofibric acid Salicylic acid Ketoprofen Fenoprop Naproxen Metronidazole Ibuprofen Primidone Diclofenac Gemfibrozil Propoxur Enterolactone Carbamazepine pentachlorophenol DEET Estriol Atrazine Ametryn Amitriptyline Benzophenone 4-tert-Butylphenol Oxybenzone Estrone bisphenol A 17α-ethynylestradiol 17β-estradiol Triclosan β-Estradiol-17-acetate 4-tert-Octylphenol Octocrylene | 94 100 100 93 100 98 100 84 99 99 99 80 92 98 99 94 90 93 98 100 100 99 100 100 98 99 99 100 99 98 | [104] |
Synthetic Wastewater (OMBR) | TFC ** Flat-sheet FO membrane (Hydration Technology Inc.), area 0.03 m2, 0.5 M NaCl DS, SRT 20 d, temperature 21 °C, MLSS 5.5 g/L, DO 5 mg/L | 8–3 | 4 | Clofibric acid Salicylic acid Ketoprofen Fenoprop Naproxen Metronidazole Ibuprofen Primidone Diclofenac Gemfibrozil Propoxur Enterolactone Carbamazepine pentachlorophenol DEET Estriol Atrazine Ametryn Amitriptyline Benzophenone 4-tert-Butylphenol Oxybenzone Estrone bisphenol A 17α-ethynylestradiol 17β-estradiol Triclosan β-Estradiol-17-acetate 4-tert-Octylphenol Octocrylene | 99 100 97 97 98 99 99 100 100 98 98 96 97 98 98 95 90 94 99 99 99 100 100 98 100 100 100 100 100 100 | [6] |
Synthetic Wastewater (OMBR+MF) | CTA # Flat-sheet FO membrane (Hydration Technology Inc.-(HTI)), area 0.014 m2, 1 NaCl DS, PVDF MF membrane Mitsubishi Rayon Engineering (Tokyo, Japan) area 0.074 m2, pore size 0.4 μm, temperature 22 °C, HRT 24 h, MLSS 2–3.3 g/L, DO 5 mg/L | MF 1.6–2.6 FO 1.7 (steady) | 0.4 | Salicylic acid Clofibric acid Metronidazole Fenoprop Ketoprofen Naproxen Primidone Ibuprofen Propoxur Diclofenac Enterolactone Carbamazepine Gemfibrozil Amitriptyline DEET Estriol Atrazine pentachlorophenol Ametryn Benzophenone 4-tert-Butylphenol Estrone bisphenol A Oxybenzone 17α-ethynylestradiol 17β-estradiol β-Estradiol 17-acetate 4-tert-Octylphenol Triclosan Octocrylene | 95 89 90 85 99 100 100 100 70 80 82 65 97 90 99 100 20 100 90 98 97 100 85 98 100 100 99 98 97 92 | [76] |
Synthetic Wastewater (OMBR+MF) | TFC Flat-sheet FO membrane (Hydration Technology Inc.), area 0.056 m2, 0.5 M NaCl DS, PVDF MF membrane area 0.12 m2, pore size 0.20 μm, SRT 30 d, temperature 25 °C, pH 7.5, HRT 4.2–6.6 h, MLSS 6 g/L, DO 6 mg/L | FO 6.06–8.14, MF 7.23–9.24 | Bezafibrate Indomethacin Ketoprofen Gemfibrozil Ibuprofen Trimethoprim Atenolol Sulfamethoxazole | 98 100 94 99 100 92 98 96 | [101] | |
Synthetic wastewater | Flat-sheet, thin-film composite HTI-TFC-FO area 0.03 m2, MLSS 5 g/L, DO 5 mg/L, SRT 20 d,HRT 27–60 h, 0.5 M NaCl DS | 7–2 | 2–6 | Clofibric acid Salicylic acid Ketoprofen Fenoprop Naproxen Metronidazole Ibuprofen Primidone Diclofenac Gemfibrozil Propoxur Enterolactone Carbamazepine pentachlorophenol DEET Estriol Atrazine Ametryn Amitriptyline Benzophenone 4-tert-Butylphenol Oxybenzone Estrone bisphenol A 17α-ethynylestradiol 17β-estradiol Triclosan β-Estradiol-17-acetate 4-tert-Octylphenol Octocrylene | 98 98 97 96 98 98 99 98 98 98 99 98 98 98 98 93 90 97 96 98 98 99 99 97 98 99 98 98 98 90 | [5] |
Synthetic wastewater | Laboratory scale baffled OMBR, HTI-CTA FO membrane and PES hollow-fiber membrane module, pore size of 0.4 μm and area FO membrane 0.0264 m2 and MF membrane 0.1 m2, HRT 30 h, SRT 70 d MLSS 3.5 g/L, | 7–5.5 | 2.5 | Caffeine Atrazine Atenolol | 94 51 100 | [100] |
Municipal wastewater | Pilot-scale hybrid UF-OMBR, UF hollow-fiberPVDF membrane module (Koch membrane) 0.03 μm pore size, area 0.44 m2, FO plate-and frame Cassette (Hydration Technology), 1.2 m2 area, MLSS 1.6–3.6 g/L, SRT-63- 68 d, HRT 30 h, DS-0.7M NaCl, | 4.7 steady | 2 (UF subsystem on) | Acesulfame Acetaminophen Atenolol bisphenol A Caffeine DEET Diclofenac Diphenhydramine Fluoxetine Ibuprofen Naproxen Oxybenzone Propylparaben Sulfamethoxazole Surcalose Triclocarban Trimethoprim TCEP TCPP TDCP | 100 100 100 87 100 96 100 100 100 100 100 100 100 99 100 100 100 98 99 100 | [36] |
Pharmaceutical wastewater | OMBR, FO flat sheet (Hydration Technology), 0.04 m2 area, MLSS 7.2–8.1 g/L, SRT-63-68 d, HRT 30 h, DS-0.5 NaCl, SRT– 20 d, HRT- 33 h (HTI) | 2.7 steady | na | Diclofenac Naproxen Ibuprofen | 98.4 98.3 97.1 | [102] |
Synthetic Wastewater | Lab-scale OMBR, CTA FO flat sheet (Hydration Technology), 0.02 m2 area, PRO mode, DS- 1.5 M NaCl, MLSS 3.4–3.7 g/L | 3 (Steady) | 4.1 | trimethoprim diclofenac simazine, atrazine, diuron Salicylic Acid Paracetamol Phenylphenol Propylparaben DEET Caffeine Ibuprofen t-octylphenol Primidone Meprobamate Nonylphenol Naproxen Carbamazepine Linuron Gemfibrozil Dilantin Triamteren eSulfamethoxazole Ketoprofen pentachlorophenol Atenolol Estrone 17β-Estradiol 17α-Estradiol Amitriptyline Androstenedione Estriol Testosterone Triclosan Trimethoprim Etiocholanolone Androsterone 17α-Ethynylestradiol Diazinon Fluoxetine Triclocarban Clozapine Omeprazole Chlorpyrifos HydroxyzineEnalapril Risperidone Simvastatin Methotrexate Verapamil Simvastanin | 32% 30% 02 20 22 70 100 90 99 32 60 99 90 58 38 78 82 32 70 90 36 32 80 82 80 100 98 99 99 99 99 98 100 90 33 100 100 99 99 99 97 100 83 99 99 100 82 80 91 100 | [103] |
Wastewater | Membrane with Operating Conditions | Temperature | MD Flux LMH | OMPs Investigated | % Removal | References | |
---|---|---|---|---|---|---|---|
Feed | Permeate | ||||||
Synthetic wastewater | MD-EMBR * reactor PTFE side stream MD Pore size 0.2 µm, 95–100 μM (DMP) **/min laccase, DO 3 mg/L | 30 | 10 | 4 (Steady flux) | Primidone Ketoprofen Naproxen Gemfibrozil Metronidazole Diclofenac Fenoprop Ibuprofen Ametrine Clofibric acid Carbamazepine Octocrylene Amitriptyline Atrazine Propoxur Benzophenone DEET Enterolactone Estriol 17α–Ethinylestradiol Oxybenzone Estrone 17β–Estradiol 17β-Estradiol-17-acetate bisphenol A Salicylic acid pentachlorophenol Triclosan 4-tert-Butylphenol | 99 98 99 98 98 96 99 98 94 99 99 99 99 92 95 99 94 96 97 98 94 99 98 98 96 97 97 98 98 | [108] |
Synthetic wastewater | Membrane distillation with an enzymatic bioreactor (MD-EMBR) PTFE side stream MD Pore size 0.22 µm, 95–100 μM (DMP)/min laccase, DO 3 mg/L | 30 | 10 | 3.75 | Sulfamethoxazole Carbamazepine Diclofenac Oxybenzone Atrazine | >99% for all | [20] |
Synthetic wastewater | AnMBR-MD AnMBR MLSS 10 g/L, MLVSS 5 g/L, ceramic MF pore size 1 μm, area 0.09 m2, HRT 4 d, 0.3 to 0.5 L/g COD, MD PTFE membrane, 0.2 µm pore size. | 45 | 20 | Caffeine Sulfamethoxazole Ketoprofen Trimethoprim Paracetamol Naproxen Primidone Ibuprofen Triamterene Carazolol TCEP Diclofenac Carbamazepine Gemfibrozil Simazine Amitriptyline Atrazine Diuron Propylparaben Linuron Clozapine Phenylphenol bisphenol A Diazinon Triclosan Triclocarban | 99 89 99 99 99 97 99 99 98 97 92 75 90 99 79 99 74 99 91 93 99 80 85 99 85 95 | [83] | |
Synthetic wastewater | PTFE side stream MD Bioreactor MLSS 5.3 g/L, pH 7.6, DO 2.8 mg/L, HRT 9.6 d, temperature 40 °C | 40 | 14 | 1.2 (Steady flux) >95% removal for all OMPs | Clofibric acid Salicylic acid Ketoprofen Fenoprop Naproxen Ibuprofen Primidone Diclofenac Gemfibrozil Propoxur Carbamazepine pentachlorophenol Estriol Atrazine Ametryn Benzophenone Amitriptyline 4-Tert-butyphenol Oxybenzone Estrone 17α-Ethinylestradiol 17β-Estradiol Triclosan 17β-Estrodiol-17- acetate Octocrylene | 100 96 99 97 100 100 100 95 98 100 96 97 98 96 99 97 99 98 99 100 99 100 98 100 97 | [75] |
Synthetic wastewater | OMBR-MD TFC-FO (HTI) membrane, 0.42 nm pore size, effective area of 300 cm2, MLSS 6 g/L, HRT 30–40 h, SRT 20 d, DO 5 mg/L. PTFE MD membrane, 2 nm pore size. | 40 | 20 | 6 (Steady flux) | Clofibric acid Salicylic acid Ketoprofen Fenoprop Naproxen Metronidazole Ibuprofen Primidone Diclofenac Gemfibrozil Propoxur Enterolactone Carbamazepine pentachlorophenol DEET Estriol Atrazine Ametrine Amitriptyline Benzophenone 4-Tert-butyl phenol Oxybenzone Estrone bisphenol A 17α-Ethinylestradiol 17β-Estradiol Triclosan 17β-Estradiol-17- acetate Octocrylene | 99 99 99 98 99 95 99 99 98 99 99 90 99 99 99 91 95 98 99 98 99 99 99 93 98 99 98 98 99 98 | [97] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathak, N.; Tran, V.H.; Merenda, A.; Johir, M.A.H.; Phuntsho, S.; Shon, H. Removal of Organic Micro-Pollutants by Conventional Membrane Bioreactors and High-Retention Membrane Bioreactors. Appl. Sci. 2020, 10, 2969. https://doi.org/10.3390/app10082969
Pathak N, Tran VH, Merenda A, Johir MAH, Phuntsho S, Shon H. Removal of Organic Micro-Pollutants by Conventional Membrane Bioreactors and High-Retention Membrane Bioreactors. Applied Sciences. 2020; 10(8):2969. https://doi.org/10.3390/app10082969
Chicago/Turabian StylePathak, Nirenkumar, Van Huy Tran, Andrea Merenda, M. A. H. Johir, Sherub Phuntsho, and Hokyong Shon. 2020. "Removal of Organic Micro-Pollutants by Conventional Membrane Bioreactors and High-Retention Membrane Bioreactors" Applied Sciences 10, no. 8: 2969. https://doi.org/10.3390/app10082969
APA StylePathak, N., Tran, V. H., Merenda, A., Johir, M. A. H., Phuntsho, S., & Shon, H. (2020). Removal of Organic Micro-Pollutants by Conventional Membrane Bioreactors and High-Retention Membrane Bioreactors. Applied Sciences, 10(8), 2969. https://doi.org/10.3390/app10082969