What Is the Impact of Heatwaves on European Viticulture? A Modelling Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Locations
2.2. Crop Model Description
2.3. Input Data
2.4. Model Runs
3. Results
4. Discussion and Conclusions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Koppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Baldocchi, D.; Wong, S. Accumulated winter chill is decreasing in the fruit growing regions of California. Clim. Chang. 2008, 87, S153–S166. [Google Scholar] [CrossRef]
- Luedeling, E.; Girvetz, E.H.; Semenov, M.A.; Brown, P.H. Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees. PLoS ONE 2011, 6, e20155. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Brennan, R.M.; Jones, H.G. Declining chilling and its impact on temperate perennial crops. Environ. Exp. Bot. 2013, 91, 48–62. [Google Scholar] [CrossRef]
- Gladstones, J. Wine, Terroir and Climate Change; Wakefield Press: Adelaide, Australia, 2011. [Google Scholar]
- Keller, M. The Science of Grapevines: Anatomy and Physiology; Elsevier, Inc.: New York, NY, USA, 2010; p. 400. [Google Scholar]
- Coombe, B.G. Influence of temperature on composition and quality of grapes. Acta Hort. 1987, 206, 23–36. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Hanes, J.M. Continental-scale phenology: Warming and chilling. Int. J. Clim. 2010, 30, 1595–1598. [Google Scholar] [CrossRef]
- Winkler, A.J. General Viticulture; University of California Press: Berkeley, CA, USA, 1974. [Google Scholar]
- Bonhomme, R. Review: Bases and limits to using ‘degree.day’ units. Eur. J. Agron. 2000, 13, 1–10. [Google Scholar] [CrossRef]
- Mariani, L.; Parisi, S.; Cola, G.; Failla, O. Climate change in Europe and effects on thermal resources for crops. Int. J. Biometeorol. 2012. [Google Scholar] [CrossRef]
- Wang, E.; Engel, T. Simulation of phenological development of wheat crops. Agric. Syst. 1998, 58, 1–24. [Google Scholar] [CrossRef]
- Yan, W.; Hunt, L.A. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 1999, 84, 607–614. [Google Scholar] [CrossRef] [Green Version]
- Molitor, D.; Junk, J.; Evers, D.; Hoffmann, L.; Beyer, M. A high resolution cumulative degree day based model to simulate phenological development of grapevine. Am. J. Enol. Vitic. 2014, 65, 72–80. [Google Scholar] [CrossRef]
- Ferrini, F.; Mattii, G.B.; Nicese, F.P. Effect of Temperature on Key Physiological Responses of Grapevine Leaf. Am. J. Enol. Vitic. 1995, 46, 375. [Google Scholar]
- Moutinho-Pereira, J.M.; Correia, C.M.; Goncalves, B.M.; Bacelar, E.A.; Torres-Pereira, J.M. Leaf gas exchange and water relations of grapevines grown in three different conditions. Photosynthetica 2004, 42, 81–86. [Google Scholar] [CrossRef]
- Berry, J.; Bjorkman, O. Photosynthetic Response and Adaptation to Temperature in Higher-Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1980, 31, 491–543. [Google Scholar] [CrossRef]
- Matsui, S.; Ryugo, K.; Kliewer, W.M. Lowered Berry Quality Due to Heat Stress at the Early Ripening Stage of Berry Growth in a Seeded Grapevine, Vitis vinifera L.; Research Bulletin of the Faculty of Agriculture-Gifu University: Gifu, Japan, 1991. [Google Scholar]
- Sepúlveda, G.; Kliewer, W.M. Stomatal Response of Three Grapevine Cultivars (Vitis vinifera L.) to High Temperature. Am. J. Enol. Vitic. 1986, 37, 44. [Google Scholar]
- Kliewer, W.M. Influence of Temperature, Solar Radiation and Nitrogen on Coloration and Composition of Emperor Grapes. Am. J. Enol. Vitic. 1977, 28, 96. [Google Scholar]
- Schultz, H.R. Extension of a Farquhar model for limitations of leaf photosynthesis induced by light environment, phenology and leaf age in grapevines (Vitis vinifera L. cvv. White Riesling and Zinfandel). Funct. Plant Biol. 2003, 30, 673–687. [Google Scholar] [CrossRef]
- Greer, D.H.; Weston, C. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Funct. Plant Biol. 2010, 37, 206–214. [Google Scholar] [CrossRef]
- Ingvordsen, C.H.; Lyngkjaer, M.F.; Peltonen-Sainio, P.; Mikkelsen, T.N.; Stockmarr, A.; Jorgensen, R.B. How a 10-day heatwave impacts barley grain yield when superimposed onto future levels of temperature and CO2 as single and combined factors. Agric. Ecosyst. Environ. 2018, 259, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Grace, W.J.; Sadras, V.O.; Hayman, P.T. Modelling heatwaves in viticultural regions of southeastern Australia. Aust. Meteorol. Oceanogr. J. 2009, 58, 249–262. [Google Scholar] [CrossRef]
- Menzel, A. A 500 year pheno-climatological view on the 2003 heatwave in Europe assessed by grape harvest dates. Meteorol. Z. 2005, 14, 75–77. [Google Scholar] [CrossRef]
- Beniston, M. The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.; Fraga, H.; Fonseca, A.; de Cortazar-Atauri, I.G.; Val, M.C.; Carlos, C.; Reis, S.; Santos, J.A. Grapevine Phenology of cv. Touriga Franca and Touriga Nacional in the Douro Wine Region: Modelling and Climate Change Projections. Agronomy 2019, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Moriondo, M.; Ferrise, R.; Trombi, G.; Brilli, L.; Dibari, C.; Bindi, M. Modelling olive trees and grapevines in a changing climate. Environ. Model. Softw. 2015, 72, 387–401. [Google Scholar] [CrossRef]
- Leolini, L.; Bregaglio, S.; Moriondo, M.; Ramos, M.C.; Bindi, M.; Ginaldi, F. A model library to simulate grapevine growth and development: Software implementation, sensitivity analysis and field level application. Eur. J. Agron. 2018, 99, 92–105. [Google Scholar] [CrossRef]
- Brisson, N.; Launay, M.; Mary, B.; Beaudoin, N. Conceptual Basis, Formalisations and Parameterization of the STICS Crop Model; Editions Quae: Versailles, France, 2008; p. 297. [Google Scholar]
- García de Cortazar-Atauri, I. Adaptation du Modèle STICS à la Vigne (Vitis vinifera L.). Utilisation Dans le Cadre d’une étude d’impact du Changement Climatique à l’échelle de la France. Ph.D. Thesis, Ecole Nationale Supérieure Agronomique, Montpellier, France, 2006. [Google Scholar]
- Fraga, H.; Costa, R.; Moutinho-Pereira, J.; Correia, C.M.; Dinis, L.-T.; Gonçalves, I.; Silvestre, J.; Eiras-Dias, J.; Malheiro, A.C.; Santos, J.A. Modeling Phenology, Water Status, and Yield Components of Three Portuguese Grapevines Using the STICS Crop Model. Am. J. Enol. Vitic. 2015, 66, 482–491. [Google Scholar] [CrossRef]
- Valdes-Gomez, H.; Celette, F.; García de Cortazar-Atauri, I.; Jara-Rojas, F.; Ortega-Farias, S.; Gary, C. Modelling Soil Water Content and Grapevine Growth and Development with the Stics Crop-Soil Model under Two Different Water Management Strategies. J. Int. Des. Sci. De La Vigne Et Du Vin 2009, 43, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Santos, J.A. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob. Chang. Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A.; Moutinho-Pereira, J.; Carlos, C.; Silvestre, J.; Eiras-Dias, J.; Mota, T.; Malheiro, A.C. Statistical modelling of grapevine phenology in Portuguese wine regions: Observed trends and climate change projections. J. Agric. Sci. 2015, FirstView, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Fraga, H.; Santos, J.A. Vineyard mulching as a climate change adaptation measure: Future simulations for Alentejo, Portugal. Agric. Syst. 2018, 164, 107–115. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Santos, J.A. Viticultural irrigation demands under climate change scenarios in Portugal. Agric. Water Manag. 2018, 196, 66–74. [Google Scholar] [CrossRef]
- García de Cortazar-Atauri, I.; Brisson, N.; Gaudillere, J.P. Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.). Int. J. Biometeorol. 2009, 53, 317–326. [Google Scholar] [CrossRef]
- García de Cortazar-Atauri, I.; Brisson, N.; Ollat, N.; Jacquet, O.; Payan, J.C. Asynchronous dynamics of grapevine (Vitis vinifera) maturation: Experimental study for a modelling approach. J. Int. Des Sci. De La Vigne Et Du Vin 2009, 43, 83–97. [Google Scholar] [CrossRef]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- C3S. ERA5: Fifth Generation of ECMWF Atmospheric Reanalysis of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS), 2017. Available online: https://climate.copernicus.eu/climate-data-store (accessed on 1 February 2020).
- FAO/IIASA/ISRIC/ISSCAS/JRC. Harmonized World Soil Database (version 1.2); FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2012. [Google Scholar]
- Bouma, J. Using Soil Survey Data for Quantitative Land Evaluation. In Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1989; Volume 9, pp. 177–213. [Google Scholar]
- Jones, G.V. Climate and Terroir: Impacts of Climate Variability and Change on Wine in Fine Wine and Terroir—The Geoscience Perspective; Macqueen, R.W., Meinert, L.D., Eds.; Geoscience Canada, Geological Association of Canada: St. John’s, NL, Canada, 2006. [Google Scholar]
- Anderson, K.; Aryal, N.R. Which Winegrape Varieties are Grown Where? A Global Empirical Picture; University of Adelaide Press: Adelaide, Australia, 2013; 700p. [Google Scholar]
- Jackson, R.S. Wine Science: Principles and Applications; Elsevier Science: Amsterdam, The Netherlands, 2008; 776p. [Google Scholar]
- White, M.A.; Diffenbaugh, N.S.; Jones, G.V.; Pal, J.S.; Giorgi, F. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA 2006, 103, 11217–11222. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.C.; Coito, J.L.; Colaco, S.; Sangiogo, M.; Amancio, S. Heat stress in grapevine: The pros and cons of acclimation. Plant Cell Environ. 2015, 38, 777–789. [Google Scholar] [CrossRef]
- Greer, D.H.; Weedon, M.M.; Weston, C. Reductions in biomass accumulation, photosynthesis in situ and net carbon balance are the costs of protecting Vitis vinifera ‘Semillon’ grapevines from heat stress with shade covering. Aob Plants 2011, 2011, plr023. [Google Scholar] [CrossRef]
- Webb, L.; Watt, A.; Hill, T.; Whiting, J.; Wigg, F.; Dunn, G.; Needs, S.; Barlow, E.W.R. Extreme Heat: Managing Grapevine Response. Documenting Regional and Inter-Regional Variation of Viticultural Impact and Management Input Relating to the 2009 Heatwave in South-Eastern Australia. GWRDC and University of Melbourne: Melbourne; University of Melbourne: Melbourne, Australia, 2009. [Google Scholar]
- Molitor, D.; Keller, M. Yield of Müller-Thurgau and Riesling grapevines is altered by meteorological conditions in the current and the previous growing seasons. OENO One 2016, 50, 245–258. [Google Scholar]
- Kliewer, W.M. Effect of High-Temperatures during Bloom-Set Period on Fruit-Set, Ovule Fertility, and Berry Growth of Several Grape Cultivars. Am. J. Enol. Vitic. 1977, 28, 215–222. [Google Scholar]
- OIV. 2019 Statistical Report on World Vitiviniculture; International Organisation of Vine and Wine: Paris, France, 2019. [Google Scholar]
- Schaffer, B.; Andersen, P.C. Handbook of Environmental Physiology of Fruit Crops. Volume 1. Temperature Crops; CRC Press: Boca Raton, FL, USA, 1994; 358p. [Google Scholar]
- Moutinho-Pereira, J.; Magalhães, N.; Gonçalves, B.; Bacelar, E.; Brito, M.; Correia, C. Gas exchange and water relations of three Vitis vinifera L. cultivars growing under Mediterranean climate. Photosynthetica 2007, 45, 202–207. [Google Scholar] [CrossRef]
- Wang, L.J.; Li, S.H. Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regul. 2006, 48, 137–144. [Google Scholar] [CrossRef]
- Renouf, V.; Tregoat, O.; Roby, J.P.; Van Leeuwen, C. Soils, Rootstocks and Grapevine Varieties in Prestigious Bordeaux Vineyards and Their Impact on Yield and Quality. J. Int. Des Sci. De La Vigne Et Du Vin 2010, 44, 127–134. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef] [Green Version]
- Chaves, M.M.; Santos, T.P.; Souza, C.R.; Ortuno, M.F.; Rodrigues, M.L.; Lopes, C.M.; Maroco, J.P.; Pereira, J.S. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Fraga, H.; Atauri, I.G.D.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Viticulture in Portugal: A review of recent trends and climate change projections. OENO One 2017, 51, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Fraga, H.; Santos, J.A. Daily prediction of seasonal grapevine production in the Douro wine region based on favourable meteorological conditions. Aust. J. Grape Wine Res. 2017, 23, 296–304. [Google Scholar] [CrossRef]
COUNTRY | REGION | LON (°) | LAT (°) | T (°C) | P (mm) |
---|---|---|---|---|---|
France | Alsace | 7.38 | 48.20 | 10.6 | 605 |
Bordeaux | 0.55 | 44.50 | 13.2 | 807 | |
Champagne | 4.00 | 49.16 | 10.5 | 664 | |
Loire Valley | 0.13 | 47.12 | 12.3 | 684 | |
Rhone | 4.83 | 44.06 | 14.7 | 733 | |
Germany | Mosel | 6.87 | 49.28 | 10.4 | 766 |
Rheinhessen | 8.13 | 49.92 | 10.6 | 579 | |
Italy | Emilia-Romagna | 10.93 | 44.50 | 13.1 | 840 |
Piedmont | 8.67 | 44.66 | 13.3 | 988 | |
Sicily | 13.99 | 37.64 | 15.9 | 482 | |
Tuscany | 11.77 | 43.08 | 13.6 | 723 | |
Luxembourg | Moselle | 6.35 | 49.55 | 10.3 | 743 |
Portugal | Alentejo | −7.56 | 38.38 | 17.2 | 562 |
Douro | −7.55 | 41.17 | 13.3 | 830 | |
Minho | −8.41 | 41.82 | 14.1 | 956 | |
Spain | La Mancha | −2.69 | 39.65 | 14.2 | 455 |
La Rioja | −2.40 | 41.57 | 11.5 | 523 | |
Ribera del Duero | −4.36 | 41.63 | 12.3 | 423 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraga, H.; Molitor, D.; Leolini, L.; Santos, J.A. What Is the Impact of Heatwaves on European Viticulture? A Modelling Assessment. Appl. Sci. 2020, 10, 3030. https://doi.org/10.3390/app10093030
Fraga H, Molitor D, Leolini L, Santos JA. What Is the Impact of Heatwaves on European Viticulture? A Modelling Assessment. Applied Sciences. 2020; 10(9):3030. https://doi.org/10.3390/app10093030
Chicago/Turabian StyleFraga, Helder, Daniel Molitor, Luisa Leolini, and João A. Santos. 2020. "What Is the Impact of Heatwaves on European Viticulture? A Modelling Assessment" Applied Sciences 10, no. 9: 3030. https://doi.org/10.3390/app10093030
APA StyleFraga, H., Molitor, D., Leolini, L., & Santos, J. A. (2020). What Is the Impact of Heatwaves on European Viticulture? A Modelling Assessment. Applied Sciences, 10(9), 3030. https://doi.org/10.3390/app10093030