A Review of In-Vivo and In-Vitro Real-Time Corrosion Monitoring Systems of Biodegradable Metal Implants
Abstract
:1. Introduction
2. Biodegradable Metals and Their Alloys
3. Correlation of In-Vitro and In-Vivo Corrosion
4. Compromise between Mechanical Integrity and Degradation Rate
5. Implant–Tissue Interaction during In Vivo Corrosion
6. Real-Time In-Vivo and In-Vitro Corrosion Monitoring
6.1. Electrochemical-Based Monitoring System
6.2. Microsensor-Based Monitoring System
6.3. Microdialysis-Based Monitoring System
7. Discussion of Real-Time In-Vivo/In-Vitro Corrosion Monitoring Methods
8. Technical Improvements
- Does not have dangerous consequences on living tissues regardless of dosage or amount of exposure in a continuous time frame.
- Human-centric in the sense that the instrument can be miniaturized, user-friendly and be able to perform its function regardless of the location of the patient.
- The analysis on the data obtained should be as soon as possible or, ideally, instantaneously.
8.1. Monitoring Local Changes Surrounding
8.2. Fabricating an Intelligent Implant
8.3. Off-Clinic Point-of-Care Implant Monitoring
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manivasagam, G.; Dhinasekaran, D.; Rajamanickam, A. Biomedical Implants: Corrosion and its Prevention-A Review. Corros. Sci. 2010, 2, 40–54. [Google Scholar]
- Paramitha, D.; Ulum, M.F.; Purnama, A.; Wicaksono, D.H.B.; Noviana, D.; Hermawan, H. Monitoring Degradation Products and Metal Ions In Vivo; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Prakasam, M.; Locs, J.; Salma-Ancane, K.; Loca, D.; Largeteau, A.; Berzina-Cimdina, L. Biodegradable Materials and Metallic Implants—A Review. J. Funct. Biomater. 2017, 8, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulum, M.F.; Caesarendra, W.; Alavi, R.; Hermawan, H. In-Vivo Corrosion Characterization and Assessment of Absorbable Metal Implants. Coatings 2019, 9, 282. [Google Scholar] [CrossRef] [Green Version]
- Hermawan, H. Updates on the research and development of absorbable metals for biomedical applications. Prog. Biomater. 2018, 7, 93–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Thouas, G.A. Metallic implant biomaterials. Mater. Sci. Eng. R 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Gu, X.N.; Witte, F. Biodegradable metals. Mater. Sci. Eng. R 2014, 77, 1–34. [Google Scholar] [CrossRef]
- Ali, M.; Hussein, M.A.; Al-Aqeeli, N. Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties. J. Alloys Compd. 2019, 792, 1162–1190. [Google Scholar] [CrossRef]
- Walker, M.H.E. Magnesium, Iron and Zinc Alloys, the Trifecta of Bioresorbable Orthopaedic and Vascular Implantation-A Review. J. Biotechnol. Biomater. 2015, 5, 1. [Google Scholar]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Noviana, D.; Paramitha, D.; Ulum, M.F.; Hermawan, H. The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats. J. Orthop. Transl. 2016, 5, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Reifenrath, J.; Krause, A.; Bormann, D.; Windhagen, H. Profound differences in the in-vivo-degradation and biocompatibility of two very similar rare-earth containing Mg-alloys in a rabbit model. Materialwissenschaft und Werkstofftechnik 2010, 41, 1054–1061. [Google Scholar] [CrossRef]
- Cheng, P.; Zhao, C.; Han, P.; Ni, J.; Zhang, S.; Zhang, X.; Chai, Y. Site-Dependent Osseointegration of Biodegradable High-Purity Magnesium for Orthopedic Implants in Femoral Shaft and Femoral Condyle of New Zealand Rabbits. J. Mater. Sci. Technol. 2016, 32, 883–888. [Google Scholar] [CrossRef]
- Li, N.; Zheng, Y. Novel Magnesium Alloys Developed for Biomedical Application: A Review. J. Mater. Sci. Technol. 2013, 29, 489–502. [Google Scholar] [CrossRef]
- Drelich, A.J.; Zhao, S.; Guillory, R.J.; Drelich, J.W.; Goldman, J. Long-term surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate. Acta Biomater. 2017, 58, 539–549. [Google Scholar] [CrossRef]
- Razavi, M.; Fathi, M.; Savabi, O.; Vashaee, D.; Tayebi, L. In vivo assessments of bioabsorbable AZ91 magnesium implants coated with nanostructured fluoridated hydroxyapatite by MAO/EPD technique for biomedical applications. Mater. Sci. Eng. C 2015, 48, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Zhao, H.; Ding, Z.; Zhang, Z.; Sun, B.; Shen, J.; Chen, S.; Zhang, B.; Yang, K.; Liu, M.; et al. In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration. Colloids Surfaces B Biointerfaces 2017, 149, 330–340. [Google Scholar] [CrossRef]
- Mei, D.; Lamaka, S.V.; Feiler, C.; Zheludkevich, M.L. The effect of small-molecule bio-relevant organic components at low concentration on the corrosion of commercially pure Mg and Mg-0.8Ca alloy: An overall perspective. Corros. Sci. 2019, 153, 258–271. [Google Scholar] [CrossRef]
- Witte, F.; Fischer, J.; Nellesen, J.; Crostack, H.A.; Kaese, V.; Pisch, A.; Beckmann, F.; Windhagen, H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 2006, 27, 1013–1018. [Google Scholar] [CrossRef]
- Sanchez, A.H.M.; Luthringer, B.J.C.; Feyerabend, F.; Willumeit, R. Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater. 2015, 13, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Hofstetter, J.; Martinelli, E.; Weinberg, A.M.; Becker, M.; Mingler, B.; Uggowitzer, P.J.; Löffler, J.F. Assessing the degradation performance of ultrahigh-purity magnesium in vitro and in vivo. Corros. Sci. 2015, 91, 29–36. [Google Scholar] [CrossRef]
- Hiromoto, S.; Inoue, M.; Taguchi, T.; Yamane, M.; Ohtsu, N. In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite. Acta Biomater. 2015, 11, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Qin, L.; Qi, H.; Zhang, D.; Zhang, G.; Gao, R.; Qiu, H.; Xia, Y.; Cao, P.; Wang, X.; et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold. Acta Biomater. 2017, 54, 454–468. [Google Scholar] [CrossRef] [PubMed]
- Duffin, M. Closing the gap. Manag. Serv. Qual. Int. J. 1992, 2, 77–79. [Google Scholar] [CrossRef]
- Pedeferri, P.M.; Pietro, L.L. Corrosion Science and Engineering; Springer: Cham, Switzerland, 2018. [Google Scholar]
- John, K.H.; Zhang, X.J. Electrical Transducers: Electrochemical Sensors and Semiconductor Molecular Sensors; Elsevier Ltd.: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Wang, J.; Jang, Y.; Wan, G.; Giridharan, V.; Song, G.L.; Xu, Z.; Koo, Y.; Qi, P.; Sankar, J.; Huang, N.; et al. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study. Corros. Sci. 2015, 104, 277–289. [Google Scholar] [CrossRef] [Green Version]
- Doepke, A.; Kuhlmann, J.; Guo, X.; Voorhees, R.T.; Heineman, W.R. A system for characterizing Mg corrosion in aqueous solutions using electrochemical sensors and impedance spectroscopy. Acta Biomater. 2013, 9, 9211–9219. [Google Scholar] [CrossRef]
- Yun, Y.; Dong, Z.; Lee, N.; Liu, Y.; Xue, D.; Guo, X.; Kuhlmann, J.; Doepke, A.; Halsall, H.B.; Heineman, W.; et al. Revolutionizing biodegradable metals. Mater. Today 2009, 12, 22–32. [Google Scholar] [CrossRef]
- Yang, Y.; Scenini, F.; Curioni, M. A study on magnesium corrosion by real-time imaging and electrochemical methods: Relationship between local processes and hydrogen evolution. Electrochim. Acta 2016, 198, 174–184. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Zhang, Z.; Farrell, N.; Chen, D.; Zheng, Y. Comparative, real-time in situ monitoring of galvanic corrosion in Mg-Mg 2 Ca and Mg-MgZn 2 couples in Hank’s solution. Corros. Sci. 2019, 161, 108–185. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, T.; Guo, X.; Kuhlmann, J.; Doepke, A.; Dong, Z.; Shanov, V.N.; Heineman, W.R. Monitoring Biodegradation of Magnesium Implants with Sensors. JOM 2016, 68, 1204–1208. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, T.; Nahan, K.; Guo, X.; Zhang, Z.; Dong, Z.; Chen, S.; Chou, D.T.; Hong, D.; Kumta, P.N.; et al. In vivo characterization of magnesium alloy biodegradation using electrochemical H2 monitoring, ICP-MS, and XPS. Acta Biomater. 2017, 50, 556–565. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, T.; Kuhlmann, J.; Dong, Z.; Chen, S.; Joshi, M.; Salunke, P.; Shanov, V.N.; Hong, D.; Kumta, P.N.; et al. In vivo monitoring the biodegradation of magnesium alloys with an electrochemical H2 sensor. Acta Biomater. 2016, 36, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Wang, T.; Hoagland, W.; Benson, D.; Dong, Z.; Chen, S.; Chou, D.T.; Hong, D.; Wu, J.; Kumta, P.N.; et al. Visual H2 sensor for monitoring biodegradation of magnesium implants in vivo. Acta Biomater. 2016, 45, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Manufacturing, F.U.S. Hydrogen Gas Indicator System. U.S. Patent 6,895,805, 24 May 2005. [Google Scholar]
- Kirkland, N.T.; Birbilis, N.; Staiger, M.P. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater. 2012, 8, 925–936. [Google Scholar] [CrossRef]
- Boutry, C.M.; Chandrahalim, H.; Streit, P.; Schinhammer, M.; Haenzi, A.C.; Hierold, C. Towards biodegradable wireless implants. Philos. Trans. R. Soc. 2012, 370, 2418–2432. [Google Scholar] [CrossRef] [Green Version]
- Boutry, C.M.; Chandrahalim, H.; Streit, P.; Schinhammer, M.; Hänzi, A.C.; Hierold, C. Characterization of miniaturized RLC resonators made of biodegradable materials for wireless implant applications. Sensors Actuators A Phys. 2013, 189, 344–355. [Google Scholar] [CrossRef]
- Schumacher, S.; Stahl, J.; Bäumer, W.; Seitz, J.M.; Bach, F.W.; Petersen, L.J.; Kietzmann, M. Ex vivo examination of the biocompatibility of biodegradable magnesium via microdialysis in the isolated perfused bovine udder model. Int. J. Artif. Organs 2011, 34, 34–43. [Google Scholar] [CrossRef]
- Natasha, M.S.; Malon, R.S.P.; Wicaksono, D.H.B.; Córcoles, E.P.; Hermawan, H. Monitoring magnesium degradation using microdialysis and fabric-based biosensors. Sci. China Mater. 2018, 61, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, A.; Ott, N.; Tournier-fillon, A.; Homazava, N.; Schmutz, P. Spectrochimica Acta Part B Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 536–545. [Google Scholar] [CrossRef]
- Natasha, S.; Malon, R.S.P.; Wicaksono, D.H.B.; Córcoles, E.P.; Hermawan, H. Electrochemical detection of magnesium ions using magnesium biosensor. Eur. Cells Mater. 2013, 26, 130000. [Google Scholar]
- Cordeiro, C.A.; Sias, A.; Koster, T.; Westerink, B.H.C.; Cremers, T.I.F.H. In vivo ‘real-time’ monitoring of glucose in the brain with an amperometric enzyme-based biosensor based on gold coated tungsten (W-Au) microelectrodes. Sensors Actuators, B Chem. 2018, 263, 605–613. [Google Scholar] [CrossRef]
- Lamaka, S.V.; Karavai, O.V.; Bastos, A.C.; Zheludkevich, M.L.; Ferreira, M.G.S. Monitoring local spatial distribution of Mg2+, pH and ionic currents. Electrochem. Commun. 2008, 10, 259–262. [Google Scholar] [CrossRef]
- Kiskova, T.; Steffekova, Z.; Karasova, M.; Kokosova, N. pH Monitoring of Urine and Tumor Microenvironments in Rats. Available online: https://www.presens.de/knowledge/publications/application-note/ph-monitoring-of-urine-and-tumor-microenvironments-in-rats-655 (accessed on 20 April 2020).
- Herr, A.E.; Hatch, A.V.; Throckmorton, D.J.; Tran, H.M.; Brennan, J.S.; Giannobile, W.V.; Singh, A.K. Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc. Natl. Acad. Sci. USA 2007, 104, 5268–5273. [Google Scholar] [CrossRef] [Green Version]
Category | Magnesium | Zinc | Iron |
---|---|---|---|
Applications | Tissue engineering, orthopedic (e.g., hip joints, screws/pins and dental implants [8]), micro clips for laryngeal microsurgery and cardiovascular applications [3]. | Vascular and orthopedic applications [9]. | |
Corrosion rate | Fastest | Medium | Slowest |
Modulus/GPa [2] | 30 (Pure Mg) 45 (Mg-Based) | 60 (Pure Zn) 100 (Zn-Based) | 150 (Pure Fe) 200 (Fe-Based) |
Tensile Strength/MPa [5] | 100 (Pure Mg) | 90 (Pure Zn) | 200 (Pure Fe) |
Maximum elongation/% [5] | 7 (Pure Mg) | 8 (Pure Zn) | 40 (Pure Fe) |
Corrosion rate */(mm/year) [5] | 8 (Pure Mg) | 0.16 (Pure Zn) | 0.1 (Pure Fe) |
Strengths [9] | Its alloys are compatible with the human body and have elastic moduli, strength and compressive strength that are similar to trabecular bone. | Anti-inflammatory and anti-proliferative properties. Effective in reducing risk of atherosclerosis. | Fe stents have promising mechanical properties and biocompatibility [15]. |
Weaknesses [14] | Quickly corrodes before complete tissue reconstruction due to lack of resistance to chloride elements present in the bodily fluids. | Compared to other alloys, it suffers from very low radial strength. | Corrodes excessively slowly to be practical for bioresorbable applications. |
Solution [9] | Surface treatment to reduce corrosion rate. Potential techniques such as alkaline heat treating, microarc oxidation (e.g., FHA/MAO coated Mg implant [16]), calcium phosphate deposition, fluoride treatment [17], electro deposition and polymer coating can be used. | Considering that zinc is relatively new to the biodegradable metal family, further studies are required to conclude its potential as vascular scaffold and in orthopedic applications. | Alloy elements such as manganese to increase iron’s corrosion rate. |
Technique | Capability | Limitation |
---|---|---|
Electrochemical-based monitoring system | Quantitative measurements and electrochemical properties can be obtained in a short period of time. | Limited electrode life leads to inability to conduct continuous in-vivo corrosion monitoring affecting quality and accuracy of data over a period of time. Replacement of electrodes might also be costly. |
Microsensor-based monitoring system | Some corrosion parameters can be measured accurately (e.g., hydrogen sensor). It has potential for real-time applications, but the sensor must be paired with a data processing device. | Needs special processing software (i.e., image or signal) to convert the raw data to obtain desired data. |
Microdialysis-based monitoring system | Can be developed for real-time monitoring when probe is connected to a data processing device. | Restrictive probe life/performance due to potential biofouling and difficult to calibrate. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin Yee Chin, P.; Cheok, Q.; Glowacz, A.; Caesarendra, W. A Review of In-Vivo and In-Vitro Real-Time Corrosion Monitoring Systems of Biodegradable Metal Implants. Appl. Sci. 2020, 10, 3141. https://doi.org/10.3390/app10093141
Yin Yee Chin P, Cheok Q, Glowacz A, Caesarendra W. A Review of In-Vivo and In-Vitro Real-Time Corrosion Monitoring Systems of Biodegradable Metal Implants. Applied Sciences. 2020; 10(9):3141. https://doi.org/10.3390/app10093141
Chicago/Turabian StyleYin Yee Chin, Priscilla, Quentin Cheok, Adam Glowacz, and Wahyu Caesarendra. 2020. "A Review of In-Vivo and In-Vitro Real-Time Corrosion Monitoring Systems of Biodegradable Metal Implants" Applied Sciences 10, no. 9: 3141. https://doi.org/10.3390/app10093141
APA StyleYin Yee Chin, P., Cheok, Q., Glowacz, A., & Caesarendra, W. (2020). A Review of In-Vivo and In-Vitro Real-Time Corrosion Monitoring Systems of Biodegradable Metal Implants. Applied Sciences, 10(9), 3141. https://doi.org/10.3390/app10093141