Rendering Mortars with Low Sand and Cement Content. Incorporation of Sanitary Ware Waste and Forest Biomass Ashes
Abstract
:1. Introduction
2. Materials, Methodology and Methods
2.1. Materials
2.2. Methodology and Methods
3. Results and Discussion
3.1. Fresh Behaviour
3.2. Water Behaviour
3.3. Mechanical Behaviour
4. Conclusions
- The incorporation of some wastes in rendering mortars is viable and is a solution to reduce landfilling;
- The industrial wastes studied in this research (FBA, SWP and SWF) can reduce the amount of natural resources extracted used in mortars (as sand and cement), replacing them and producing technically viable mortars;
- It is possible to achieve mortars simultaneously with 83% of wastes and better technical performance than a conventional mortar;
- It is possible to combine wastes and take advantage of the best features of each one, maximising their advantages and minimising their limitations;
- The mortars that presented better technical performance were SWP+FBA and SWF+SWP+FBA, with respectively 19% and 83% of recycled volume;
- The SWP+FBA and SWF+SWP+FBA mortars presented better fresh-state behaviour, better water behaviour, characterized by lower water absorption, and higher mechanical strengths than the ones presented by the REF mortar.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eurostat. Waste Statistics in Europe, Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Waste_statistics. (accessed on 20 December 2019).
- European Cement Research Academy (ECRA). Environmental Product Declaration Report. Portland-Composite Cement (CEM II) Produced in Europe 2015. Available online: https://cembureau.eu/media/1255/6117_cembureau_epd_cemii_2015-02-01.pdf (accessed on 20 December 2019).
- European Commission, Being Wise with Waste: The EU’s Approach to Waste Management; Publications Office of the European Union: Luxembourg, 2010; p. 20.
- European Parliament and of the Council and Official Journal of the European Union. European Directive 2008/98/EC: On Waste and Repealing Certain Directives (Text with EEA Relevance). 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN (accessed on 20 December 2019).
- Lucas, J.; de Brito, J.; Veiga, R.; Farinha, C.B. The effect of using sanitary ware as aggregates on rendering mortars’ performance. Mater. Des. 2016, 91, 155–164. [Google Scholar] [CrossRef]
- Farinha, C.B.; de Brito, J.; Veiga, R. Incorporation of fine sanitary ware aggregates in coating mortars. Constr. Build. Mater. 2015, 83, 194–206. [Google Scholar] [CrossRef]
- Pliya, P.; Cree, D. Limestone derived eggshell powder as a replacement in Portland cement mortar. Constr. Build. Mater. 2015, 95, 1–9. [Google Scholar] [CrossRef]
- Araya-letelier, G.; Antico, F.C.; Carrasco, M.; Rojas, P.; García-herrera, C.M. Effectiveness of new natural fibers on damage-mechanical performance of mortar. Constr. Build. Mater. 2017, 152, 672–682. [Google Scholar] [CrossRef]
- Sathiparan, N.; Nishanthana, M.; Pavithra, B.H.M. Performance of coconut coir reinforced hydraulic cement mortar for surface plastering application. Constr. Build. Mater. 2017, 142, 23–30. [Google Scholar] [CrossRef]
- Fujiyama, R.; Darwish, F.; Pereira, M. Mechanical characterization of sisal fiber reinforced cement mortar. In Proceedings of the 13th International Conference on Fracture, Beijing, China, 16–21 June 2013. [Google Scholar]
- Spadea, S.; Farina, I.; Carrafiello, A.; Fraternali, F. Recycled nylon fibers as cement mortar reinforcement. Constr. Build. Mater. 2015, 80, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Marzouk, O.Y.; Dheilly, R.M.; Queneudec, M. Valorization of post-consumer waste plastic in cementitious concrete composites. Waste Manag. 2007, 27, 310–318. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Nardinocchi, A.; Donnini, J. Reuse of recycled glass in mortar manufacturing. European J. Environ. Civ. Eng. 2016, 20, s140–s151. [Google Scholar] [CrossRef]
- Farinha, C.B.; de Brito, J.; Veiga, R. Influence of forest biomass bottom ashes on the fresh, water and mechanical behaviour of cement-based mortars. Resour. Conserv. Recycl. 2019, 149, 750–759. [Google Scholar] [CrossRef]
- Farinha, C.B.; de Brito, J.; Veiga, R. Assessment of glass fibre reinforced polymer waste reuse as filler in mortars. J. Clean. Prod. 2019, 210, 1579–1594. [Google Scholar] [CrossRef]
- Silva, A.; de Brito, J.; Veiga, R. Incorporation of fine plastic aggregates in rendering mortars. Constr. Build. Mater. 2014, 71, 226–236. [Google Scholar] [CrossRef]
- Jesus, S.; Maia, C.; Farinha, C.B.; de Brito, J.; Veiga, R. Rendering mortars with incorporation of very fine aggregates from construction and demolition waste. Constr. Build. Mater. 2019, 229, 116844. [Google Scholar] [CrossRef]
- Pedro, D.; de Brito, J.; Veiga, R. Mortars made with fine granulate from shredded tires. J. Mater. Civ. Eng. 2013, 25, 519–529. [Google Scholar] [CrossRef]
- Oliveira, R.; de Brito, J.; Veiga, R. Incorporation of fine glass aggregates in renderings. Constr. Build. Mater. 2013, 44, 329–341. [Google Scholar] [CrossRef]
- Penacho, P.; de Brito, J.; Veiga, R. Physico-mechanical and performance characterization of mortars incorporating fine glass waste aggregate. Cem. Concr. Compos. 2014, 50, 47–59. [Google Scholar] [CrossRef]
- Silva, J.; de Brito, J.; Veiga, R. Incorporation of fine ceramics in mortars. Constr. Build. Mater. 2009, 23, 556–564. [Google Scholar] [CrossRef]
- Braga, M.; de Brito, J.; Veiga, R. Reduction of the cement content in mortars made with fine concrete aggregates. Mater. Struct. 2014, 47, 171–182. [Google Scholar] [CrossRef]
- Neno, C.; de Brito, J.; Veiga, R. Using fine recycled concrete aggregate for mortar production. Mater. Res. 2014, 17, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Farinha, C.B.; de Brito, J.; Veiga, R.; Lucas, J. Reduction of cement content in renderings with fine sanitary ware aggregates. Mater. Struct. 2016, 49, 1605–1618. [Google Scholar] [CrossRef]
- Lucas, J. Performance of Mortars with Incorporation of Fine Aggregates of Sanitary Ware Waste. Aggregates Recycling. Master’s Thesis, Instituto Superior Técnico, Lisbon, Portugal, University of Lisbon, Lisbon, Portugal, 2015. [Google Scholar]
- Braga, M.; de Brito, J.; Veiga, R. Incorporation of fine concrete aggregates in mortars. Constr. Build. Mater. 2012, 36, 960–968. [Google Scholar] [CrossRef]
- Farinha, C.B.; Silvestre, J.; de Brito, J.; Veiga, R. Life cycle assessment of mortars with incorporation of industrial wastes. Fibers 2019, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- Tosti, L.; van Zomeren, A.; Pels, J.R.; Dijkstra, J.J.; Comans, R.N.J. Assessment of biomass ash applications in soil and cement mortars. Chemosphere 2019, 223, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Rajamma, R.; Senff, L.; Ribeiro, M.J.; Labrincha, J.A.; Ball, R.J.; Allen, G.C.; Ferreira, V.M. Biomass fly ash effect on fresh and hardened state properties of cement based materials. Compos. Part B Eng. 2015, 77, 1–9. [Google Scholar] [CrossRef]
- Tosti, L.; van Zomeren, A.; Pels, J.R.; Comans, R.N.J. Technical and environmental performance of lower carbon footprint cement mortars containing biomass fly ash as a secondary cementitious material. Resour. Conserv. Recycl. Recycl. 2018, 134, 25–33. [Google Scholar] [CrossRef]
- Jackiewicz-Rek, W.; Załęgowski, K.; Garbacz, A.; Bissonnette, B. Properties of cement mortars modified with ceramic waste fillers. Procedia Eng 2015, 108, 681–687. [Google Scholar] [CrossRef] [Green Version]
- Veiga, R. Behaviour of Renderings Mortars: Contribution for the Research in Cracking Resistance. Ph.D. Thesis, Civil Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal, 1998. (In Portuguese). [Google Scholar]
- Higashiyama, H.; Yagishita, F.; Sano, M.; Takahashi, O. Compressive strength and resistance to chloride penetration of mortars using ceramic waste as fine aggregate. Constr. Build. Mater. 2012, 26, 96–101. [Google Scholar] [CrossRef]
- Torkittikul, P.; Chaipanich, A. Utilization of ceramic waste as fine aggregate within Portland cement and fly ash concretes. Cem. Concr. Compos. 2010, 32, 440–449. [Google Scholar] [CrossRef]
- EN 1015-3: Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table); European Committee for Standarization (CEN): Brussels, Belgium, 1999.
- Cahier 2669-4, Certification CSTB Des Enduits Monocouches D’imperméabilisation. Modalités D’essais, Centre Scientifique et Technique du Bâtiment, Paris, France, 1993.
- EN 1015-18: Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of Hardened Mortar; European Committee for Standarization (CEN): Brussels, Belgium, 2002.
- EN 16322: Conservation of Cultural Heritage—Test Methods—Determination of Drying Properties; European Committee for Standarization (CEN): Brussels, Belgium, 2013.
- EN 1015-11: Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar; European Committee for Standarization (CEN): Brussels, Belgium, 1999.
- EN 14146: Natural Stone tests Methods: Determination of the Dynamic modulus of Elasticity (by Measuring the Fundamental Resonance Frequency); European Committee for Standarization (CEN): Brussels, Belgium, 2004.
- Santos, R. The Influence of Natural Aggregates on the Performance of Replacement Mortars for Ancient Buildings: The Effects of Mineralogy, Grading and Shape. Ph.D. Thesis, Instituto Superior Técnico, Lisbon, Portugal, Civil Engineering, University of Lisbon, Lisbon, Portugal, 2019. [Google Scholar]
MORTARS | |||||||
---|---|---|---|---|---|---|---|
REF | SWF | SWP | FBA | SWF +FBA | SWP+FBA | SWF+SWP+FBA | |
Consistency (mm) | 161.2 ± 1.8 | 174.5 ± 6.4 | 175.5 ± 0.7 | 167.2 ± 3.1 | 158.2 ± 2.3 | 161.3 ± 0.8 | 169.2 ± 0.8 |
W/b ratio | 1.3 | 1.4 | 0.9 | 1.4 | 1.5 | 1.1 | 1.2 |
Bulk density (kg/m3) | 1975 ± 7 | 1780 ± 25 | 2064 ± 9 | 2045 ± 17 | 1794 ± 8 | 2042 ± 4 | 1886 ± 8 |
Reference | - | [5] | [6] | [14] | - | - | - |
TEST | Days | MORTARS | ||||||
---|---|---|---|---|---|---|---|---|
REF | SWF | SWP | FBA | SWF+FBA | SWP+FBA | SWF+SWP+FBA | ||
Capillary coefficient (kg/(m2·min0.5)) | 28 | 1.45 ± 0.03 | 1.58 ± 0.10 | 0.78 ± 0.01 | 1.50 ± 0.10 | 2.03 ± 0.10 | 0.89 ± 0.12 | 1.25 ± 0.07 |
365 | 1.55 ± 0.07 | - | - | 1.70 ± 0.01 | 1.90 ± 0.09 | 1.11 ± 0.05 | 1.33 ± 0.05 | |
Total water absorption (kg/m2) | 28 | 17.31 ± 0.13 | 21.14 ± 0.77 | 24.07 ± 0.44 | 17.65 ± 0.48 | 23.94 ± 0.52 | 16.14 ± 0.54 | 19.57 ± 0.23 |
365 | 17.47 ± 0.31 | - | - | 18.00 ± 0.28 | 23.53 ± 0.80 | 16.79 ± 0.36 | 19.87 ± 0.22 | |
Open porosity (%) | 28 | 24.3 ± 0.3 | 29.7 ± 0.5 | 19.3±0.3 | 23.5 ± 0.5 | 30.6 ± 0.2 | 20.9 ± 0.5 | 25.7 ± 0.2 |
365 | 23.6 ± 0.3 | - | - | 24.0 ± 0.2 | 29.3 ± 0.4 | 21.2 ± 0.3 | 26.5 ± 0.4 | |
Drying rate First phase (kg/(m2·h)) | 28 | 0.10 | 0.14 | 0.17 | 0.18 | 0.07 | 0.09 | 0.18 |
365 | 0.22 | - | - | 0.09 | 0.15 | 0.13 | 0.26 | |
Drying rate Second phase (kg/(m2·h0.5)) | 28 | 0.76 | 2.03 | 0.96 | 0.92 | 1.13 | 0.73 | 0.54 |
365 | 1.42 | - | - | 1.33 | 1.75 | 1.11 | 1.25 | |
Drying rate Third phase (kg/(m2·h0.5)) | 28 | 0.24 | 0.26 | 0.13 | 0.32 | 0.22 | 0.17 | 0.16 |
365 | 0.19 | - | - | 0.21 | 0.22 | 0.18 | 0.21 | |
Drying index | 28 | 0.25 | 0.28 | 0.34 | 0.16 | 0.22 | 0.33 | 0.53 |
365 | 0.09 | - | - | 0.09 | 0.08 | 0.10 | 0.23 | |
Reference | - | [5] | [6] | [14] | - | - | - |
TEST | Days | MORTARS | ||||||
---|---|---|---|---|---|---|---|---|
REF | SWF | SWP | FBA | SWF+FBA | SWP+FBA | SWF+SWP+FBA | ||
Modulus of elasticity (GPa) | 28 | 10.2 ± 0.7 | 8.2 ± 0.4 | 18.6 ± 0.3 | 8.1 ± 0.5 | 5.8 ± 0.4 | 14.4 ± 0.2 | 12.4 ± 0.4 |
90 | 8.0 ± 0.3 | 8.1 ± 0.2 | 17.3 ± 0.3 | 7.4 ± 0.4 | 4.9 ± 0.7 | 12.6 ± 0.2 | 10.0 ± 0.4 | |
180 | 8.7 ± 0.9 | - | - | 5.7 ± 0.5 | 4.6 ± 0.1 | 12.1 ± 0.6 | 8.9 ± 0.3 | |
365 | 9.7 ± 0.3 | - | - | 6.6 ± 0.2 | 5.2 ± 0.4 | 11.8 ± 0.4 | 9.4 ± 0.2 | |
Flexural strength (MPa) | 28 | 2.10 ± 0.32 | 1.41 ± 0.10 | 4.39 ± 0.24 | 1.37 ± 0.14 | 1.10 ± 0.11 | 2.62 ± 0.05 | 2.71 ± 0.17 |
90 | 1.54 ± 0.19 | 1.83 ± 0.19 | 2.27 ± 0.27 | 1.49 ± 0.19 | 1.59 ± 0.25 | 2.65 ± 0.37 | 3.01 ± 0.28 | |
180 | 1.79 ± 0.16 | - | - | 1.35 ± 0.16 | 0.96 ± 0.15 | 2.72 ± 0.34 | 3.00 ± 0.68 | |
365 | 1.94 ± 0.17 | - | - | 1.38 ± 0.14 | 1.27 ± 0.13 | 2.83 ± 0.29 | 2.85 ± 0.11 | |
Compressive strength (MPa) | 28 | 5.19 ± 0.45 | 5.85 ± 0.49 | 14.92 ± 0.29 | 4.30 ± 0.52 | 3.37 ± 0.19 | 9.42 ± 0.58 | 9.21 ± 0.33 |
90 | 3.58 ± 0.22 | 3.90 ± 0.43 | 9.55 ± 0.49 | 3.82 ± 0.38 | 3.53 ± 0.39 | 10.38 ± 0.71 | 9.47 ± 0.57 | |
120 | - | 3.47 ± 0.19 | 7.77 ± 0.29 | - | - | - | - | |
180 | 3.96 ± 0.42 | - | - | 2.92 ± 0.41 | 3.05 ± 0.19 | 9.69 ± 0.95 | 7.92 ± 0.42 | |
365 | 5.86 ± 0.58 | - | - | 2.87 ± 0.51 | 2.86 ± 0.07 | 8.21 ± 0.37 | 8.53 ± 0.24 | |
Reference | - | [5] | [6] | [14] | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brazão Farinha, C.; de Brito, J.; Veiga, R. Rendering Mortars with Low Sand and Cement Content. Incorporation of Sanitary Ware Waste and Forest Biomass Ashes. Appl. Sci. 2020, 10, 3146. https://doi.org/10.3390/app10093146
Brazão Farinha C, de Brito J, Veiga R. Rendering Mortars with Low Sand and Cement Content. Incorporation of Sanitary Ware Waste and Forest Biomass Ashes. Applied Sciences. 2020; 10(9):3146. https://doi.org/10.3390/app10093146
Chicago/Turabian StyleBrazão Farinha, Catarina, Jorge de Brito, and Rosário Veiga. 2020. "Rendering Mortars with Low Sand and Cement Content. Incorporation of Sanitary Ware Waste and Forest Biomass Ashes" Applied Sciences 10, no. 9: 3146. https://doi.org/10.3390/app10093146
APA StyleBrazão Farinha, C., de Brito, J., & Veiga, R. (2020). Rendering Mortars with Low Sand and Cement Content. Incorporation of Sanitary Ware Waste and Forest Biomass Ashes. Applied Sciences, 10(9), 3146. https://doi.org/10.3390/app10093146