A New Guideline for Security Assessment of Power Systems with a High Penetration of Wind Turbines
Abstract
:1. Introduction
- PE-based energy sources are smaller in size in comparison with conventional ones [11,12,13]. In addition, some PE-based units, such as wind turbine type IV, are decoupled from the system from a frequency point of view. In general, it can be stated that PE-based energy sources, such as wind turbines and photovoltaics, do not introduce the inertial support as the synchronous generator does. Therefore, they suffer from lower system inertia, which makes the whole system more vulnerable to disturbances [12].
- Based on the grid codes and the relevant standards, grid-connected voltage source converters (VSCs) should support the main grid during a severe fault on the grid side [14,15]. However, under some specific circumstances, these units should be disconnected from the main system. For instance, if a wind farm is unable to withstand a certain amount of voltage drop for a specific time period, or in case of extreme frequency range, it will be disconnected from the power system [16,17]. This may cause cascading consequences for the power system.
- To review and discuss some events in some electrical grids that are derived by PE-based units, which lead to major blackouts.
- To discuss electrical power system security challenges caused by PE-based units; specifically, the grid-feeding power converters. This includes system frequency support, small-signal stability challenges, and the PE-based units’ synchronization issue.
- To present the static, dynamic, and transient security assessment models of PE-based power systems having high levels of wind turbine penetration with the grid-feeding control mode. For each level of security assessment, e.g., static, dynamic, and transient security assessments, an appropriate model of PE-based units is needed.
2. Conventional Power System Security Assessment
2.1. Power System Blackouts-Examples
2.1.1. South Australia (SA) Blackout September 2016
2.1.2. 1200 MW PV Resource Interruption August 2016
3. Power-Electronic-Based Power System Security
3.1. PE-Based Power System Security Challenges
3.2. A New Guideline for the PE-Based Power System Security Assessment
4. Simulation Results
4.1. Case Study 1: Conventional Power Systems
4.2. Case Study 2: PE-Based Power Systems
4.3. Case Study 3: PE-Based Power Systems with High Penetration of Wind Power
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eriksen, P.B.; Ackermann, T.; Abildgaard, H.; Smith, P.; Winter, W.; Garcia, J.R. System operation with high wind penetration. IEEE Power Energy Mag. 2005, 3, 65–74. [Google Scholar] [CrossRef]
- Brahma, S.M.; Girgis, A.A. Development of adaptive protection scheme for distribution systems with high penetration of distributed generation. IEEE Trans. Power Deliv. 2004, 19, 56–63. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Yang, Y.; Yang, D.; Wang, X. Distributed power-generation systems and protection. Proc. IEEE 2017, 105, 1311–1331. [Google Scholar] [CrossRef] [Green Version]
- Magdy, G.; Shabib, G.; Elbaset, A.A.; Mitani, Y. A Novel Coordination Scheme of Virtual Inertia Control and Digital Protection for Microgrid Dynamic Security Considering High Renewable Energy Penetration. IET Renew. Power Gener. 2019, 13, 462–474. [Google Scholar] [CrossRef]
- Zhou, M.; Zhai, J.; Li, G.; Ren, J. Distributed dispatch approach for bulk AC/DC hybrid systems with high wind power penetration. IEEE Trans. Power Syst. 2018, 33, 3325–3336. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Teodorescu, R.; Liserre, M.; Timbus, A.V. Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 2006, 53, 1398–1409. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Nuqui, R.; Srivastava, K.; Jonsson, T.; Holmberg, P.; Hafner, Y.J. AC grid with embedded VSC-HVDC for secure and efficient power delivery. In Proceedings of the 2008 IEEE Energy 2030 Conference, Atlanta, GA, USA, 17–18 November 2008; pp. 1–6. [Google Scholar]
- Wen, Y.; Chung, C.; Ye, X. Enhancing frequency stability of asynchronous grids interconnected with HVDC links. IEEE Trans. Power Syst. 2017, 33, 1800–1810. [Google Scholar] [CrossRef]
- Oliveira, W.D.; Vieira, J.P.; Bezerra, U.H.; Martins, D.A.; das G. Rodrigues, B. Power system security assessment for multiple contingencies using multiway decision tree. Electr. Power Syst. Res. 2017, 148, 264–272. [Google Scholar] [CrossRef]
- Kundur, P. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans. Power Syst. 2004, 19, 1387–1401. [Google Scholar]
- Farrokhabadi, M.; Canizares, C.A.; Simpson-Porco, J.W.; Nasr, E.; Fan, L.; Mendoza-Araya, P.; Tonkoski, R.; Tamrakar, U.; Hatziargyriou, N.D.; Lagos, D.; et al. Microgrid Stability Definitions, Analysis, and Examples. IEEE Trans. Power Syst. 2019, 35, 13–29. [Google Scholar] [CrossRef]
- Golpîra, H.; Seifi, H.; Messina, A.R.; Haghifam, M. Maximum Penetration Level of Micro-Grids in Large-Scale Power Systems: Frequency Stability Viewpoint. IEEE Trans. Power Syst. 2016, 31, 5163–5171. [Google Scholar] [CrossRef]
- Xiong, L.; Li, P.; Wu, F.; Wang, J. Stability Enhancement of Power Systems with High DFIG-Wind Turbine Penetration via Virtual Inertia Planning. IEEE Trans. Power Syst. 2019, 34, 1352–1361. [Google Scholar] [CrossRef]
- Teodorescu, R.; Liserre, M.; Rodriguez, P. Grid Converters for Photovoltaic and Wind Power Systems; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces; IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003); IEEE: Piscataway, NJ, USA, 2018; pp. 1–138. [CrossRef]
- Abo-Khalil, A.G. Impacts of Wind Farms on Power System Stability. In Modeling and Control Aspects of Wind Power Systems; InTech: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Sourkounis, C.; Tourou, P. Grid Code Requirements for Wind Power Integration in Europe. Conf. Pap. Energy 2013, 2013, 437674. [Google Scholar] [CrossRef] [Green Version]
- Vrakopoulou, M.; Margellos, K.; Lygeros, J.; Andersson, G. A Probabilistic Framework for Reserve Scheduling and N-1 Security Assessment of Systems with High Wind Power Penetration. IEEE Trans. Power Syst. 2013, 28, 3885–3896. [Google Scholar] [CrossRef]
- Wang, Y.; Vittal, V.; Abdi-Khorsand, M.; Singh, C. Probabilistic Reliability Evaluation Including Adequacy and Dynamic Security Assessment. IEEE Trans. Power Syst. 2020, 35, 551–559. [Google Scholar] [CrossRef]
- Zarei, S.F.; Mokhtari, H.; Ghasemi, M.A.; Blaabjerg, F. Reinforcing fault ride through capability of grid forming voltage source converters using an enhanced voltage control scheme. IEEE Trans. Power Deliv. 2018, 34, 1827–1842. [Google Scholar] [CrossRef]
- Ebrahimzadeh, E.; Blaabjerg, F.; Wang, X.; Bak, C.L.; Lund, T.; Andersen, G.K.; Suárez, C.G.; Berg, J.J. Small signal modeling of wind farms. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 3710–3716. [Google Scholar]
- Zhang, L.; Harnefors, L.; Nee, H.P. Power-synchronization control of grid-connected voltage-source converters. IEEE Trans. Power Syst. 2010, 25, 809–820. [Google Scholar] [CrossRef]
- Wang, X.; Harnefors, L.; Blaabjerg, F. Unified impedance model of grid-connected voltage-source converters. IEEE Trans. Power Electron. 2018, 33, 1775–1787. [Google Scholar] [CrossRef] [Green Version]
- Shakerighadi, B.; Ebrahimzadeh, E.; Blaabjerg, F.; Leth Bak, C. Large-Signal Stability Modeling for the Grid-Connected VSC Based on the Lyapunov Method. Energies 2018, 11, 2533. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Fu, L.; Ma, F.; Ji, F. Large Signal Synchronizing Instability of PLL-Based VSC Connected to Weak AC Grid. IEEE Trans. Power Syst. 2019, 34, 3220–3229. [Google Scholar] [CrossRef]
- Kundur, P.; Balu, N.J.; Lauby, M.G. Power System Stability and Control; McGraw-hill: New York, NY, USA, 1994; Volume 7. [Google Scholar]
- Renedo, J.; Garcı, A.; Rouco, L. Active power control strategies for transient stability enhancement of AC/DC grids with VSC-HVDC multi-terminal systems. IEEE Trans. Power Syst. 2016, 31, 4595–4604. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Yao, S.-J.; Peng, Z. Research on small-signal stability of hybrid multi-terminal HVDC system and control system parameter design. J. Eng. 2017, 2017, 2401–2406. [Google Scholar]
- Sanchez, S.; Garces, A.; Bergna-Diaz, G.; Tedeschi, E. Dynamics and stability of meshed multiterminal hvdc networks. IEEE Trans. Power Syst. 2018, 34, 1824–1833. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Tomsovic, K. Wide Area Hierarchical Voltage Control to Improve Security Margin for Systems with High Wind Penetration. IEEE Trans. Power Syst. 2018, 33, 6218–6228. [Google Scholar] [CrossRef]
- Che, L.; Liu, X.; Zhu, X.; Wen, Y.; Li, Z. Intra-Interval Security Based Dispatch for Power Systems with High Wind Penetration. IEEE Trans. Power Syst. 2019, 34, 1243–1255. [Google Scholar] [CrossRef]
- Shakerighadi, B.; Peyghami, S.; Ebrahimzadeh, E.; Blaabjerg, F.; Bak, C.L. Security Analysis of Power Electronic-based Power Systems. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; Volume 1, pp. 4933–4937. [Google Scholar] [CrossRef]
- Bie, Z.; Lin, Y.; Li, G.; Li, F. Battling the Extreme: A Study on the Power System Resilience. Proc. IEEE 2017, 105, 1253–1266. [Google Scholar] [CrossRef]
- Moore, L.M.; Post, H.N. Five years of operating experience at a large, utility-scale photovoltaic generating plant. Prog. Photovolt. Res. Appl. 2008, 16, 249–259. [Google Scholar] [CrossRef]
- Peyghami, S.; Pakensky, P.; Blaabjerg, F. An overview on the Reliability of Modern Power Electronic Based Power Systems. IEEE Open J. Power Electron. 2020, 1, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Billington, R.; Allan, R.N. Reliability Evaluation of Power Systems, 2nd ed.; Plenum: New York, NY, USA, 1994. [Google Scholar]
- Aravinthan, V.; Balachandran, T.; Ben-Idris, M.; Fei, W.; Heidari-Kapourchali, M.; Hettiarachchige-Don, A.; Jiang, J.N.; Lei, H.; Liu, C.; Mitra, J.; et al. Reliability Modeling Considerations for Emerging Cyber-Physical Power Systems. In Proceedings of the 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, USA, 24–28 June 2018; pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Cañizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in microgrid control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Sun, Y. Online Static Security Assessment of Power Systems Based on Lasso Algorithm. Appl. Sci. 2018, 8, 1442. [Google Scholar] [CrossRef] [Green Version]
- Sterpu, S.; Lu, W.; Besanger, Y.; HadjSaid, N. Power systems security analysis. In Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006; p. 5. [Google Scholar] [CrossRef]
- Saadun, N.; Sheikh Kamar Sheikh Abdullah, I.D.; Khairun Nizam Mohd Sarmin, M.; Azmi, M.T.; Nadia Nor Khairul Azha, N.; Nik Yusuf, N.S. Advanced Real-Time Power System Analytic Based on Thermal Security under N-1 Contingency. In Proceedings of the 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, Malaysia, 29 June 2019; pp. 216–220. [Google Scholar] [CrossRef]
- Lu, Z.; He, L.; Zhang, D.; Zhao, B.; Zhang, J.; Zhao, H. A Security Level Classification Method for Power Systems under N-1 Contingency. Energies 2017, 10, 2055. [Google Scholar] [CrossRef] [Green Version]
- Ding, T.; Guo, Q.; Bo, R.; Sun, H.; Zhang, B.; Huang, T. A Static Voltage Security Region for Centralized Wind Power Integration—Part II: Applications. Energies 2014, 7, 444–461. [Google Scholar] [CrossRef] [Green Version]
- Arava, V.N.; Vanfretti, L. Analyzing the Static Security Functions of a Power System Dynamic Security Assessment Toolbox. Int. J. Electr. Power Energy Syst. 2018, 101, 323–330. [Google Scholar] [CrossRef]
- Da Silva, J.M.; Costa, I.; dos Santos, J.V.C.; Barbosa, J.L.V.; Braun, T.; Pessin, G. Toward a More Reliable System for Contingency Selection in Static Security Analysis of Electric Power Systems. IEEE Syst. J. 2020, 14, 1183–1194. [Google Scholar] [CrossRef]
- Alimi, O.A.; Ouahada, K.; Abu-Mahfouz, A.M. Real Time Security Assessment of the Power System Using a Hybrid Support Vector Machine and Multilayer Perceptron Neural Network Algorithms. Sustainability 2019, 11, 3586. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Bo, Z.; Zhao, Y.; Ma, X.; Zhang, M.; Zheng, H.; Wang, L. Integrated wide area protection and control for power grid security. CSEE J. Power Energy Syst. 2019, 5, 206–214. [Google Scholar] [CrossRef]
- Haes Alhelou, H.; Hamedani-Golshan, M.E.; Njenda, T.C.; Siano, P. A survey on power system blackout and cascading events: Research motivations and challenges. Energies 2019, 12, 682. [Google Scholar] [CrossRef] [Green Version]
- Romero, J.J. Blackouts illuminate India’s power problems. IEEE Spectr. 2012, 49, 11–12. [Google Scholar] [CrossRef]
- Kabir, M.A.; Sajeeb, M.M.H.; Chowdhury, S.M.S.M.; Chowdhury, A.H. Analysis of real time frequency transients and inertia estimation of Bangladesh power system. In Proceedings of the 2015 18th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 21–23 December 2015; pp. 116–121. [Google Scholar] [CrossRef]
- Yan, R.; Masood, N.; Kumar Saha, T.; Bai, F.; Gu, H. The Anatomy of the 2016 South Australia Blackout: A Catastrophic Event in a High Renewable Network. IEEE Trans. Power Syst. 2018, 33, 5374–5388. [Google Scholar] [CrossRef]
- NERC/WECC Inverter Task Force. 1200 MW Fault Induced Solar Photovoltaic Resource Interruption Disturbance Report: Southern California 8/16/2016 Event; Technical Report; NERC: Atlanta, GA, USA, 2017. [Google Scholar]
- Dobson, I.; Newman, D.E. Cascading blackout overall structure and some implications for sampling and mitigation. Int. J. Electr. Power Energy Syst. 2017, 86, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Eaton, B.T. United States Annual Report 2013. Technical Report. 2013. Available online: http://powerquality.eaton.com (accessed on 29 April 2020).
- Gawanmeh, A.; Alomari, A. Taxonomy Analysis of Security Aspects in Cyber Physical Systems Applications. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Nagpal, M.; Martinich, T.G.; Jiao, Z.; Manuel, S.; Zhang, H.A.; Alimardani, A. Lessons Learned from a Regional System Blackout and Restoration in BC Hydro. IEEE Trans. Power Deliv. 2018, 33, 1954–1961. [Google Scholar] [CrossRef]
- Operator, Australian Energy Market Black system south australia 28 september 2016. In Report of the Australian Energy Market Operator Limited (AEMO); AEMO: Melbourne, Australia, 2017.
- Shakerighadi, B.; Ebrahimzadeh, E.; Taul, M.G.; Blaabjerg, F.; Bak, C.L. Modeling and Adaptive Design of the SRF-PLL: Nonlinear Time-Varying Framework. IEEE Access 2020, 8, 28635–28645. [Google Scholar] [CrossRef]
- Karimi, A.; Khayat, Y.; Naderi, M.; Dragicevic, T.; Mirzaei, R.; Blaabjerg, F.; Bevrani, H. Inertia Response Improvement in Microgrids: A Fuzzy-Based Virtual Synchronous Generator Control. IEEE Trans. Power Electron. 2019, 35, 4321–4331. [Google Scholar] [CrossRef]
- Shakerighadi, B.; Ebrahimzadeh, E.; Blaabjerg, F.; Bak, C.L. Large Signal Stability Assessment of the Grid-Connected Converters based on its Inertia. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications (EPE ’19 ECCE Europe), Genova, Italy, 3–5 September 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Golpîra, H.; Messina, A.R. A Center-of-Gravity-Based Approach to Estimate Slow Power and Frequency Variations. IEEE Trans. Power Syst. 2018, 33, 1026–1035. [Google Scholar] [CrossRef]
- Karimi Ghartemani, M.; Khajehoddin, S.A.; Jain, P.K.; Bakhshai, A. Problems of Startup and Phase Jumps in PLL Systems. IEEE Trans. Power Electron. 2012, 27, 1830–1838. [Google Scholar] [CrossRef]
- Wang, X.; Blaabjerg, F. Harmonic Stability in Power Electronic-Based Power Systems: Concept, Modeling, and Analysis. IEEE Trans. Smart Grid 2018, 10, 2858–2870. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.; Zhang, Q.; Hussain, S.; Hong, B.; Zou, W. Impacts of Integration of Wind Farms on Power System Transient Stability. Appl. Sci. 2018, 8, 1289. [Google Scholar] [CrossRef] [Green Version]
- Mauricio, J.M.; Leon, A.E. Improving Small-Signal Stability of Power Systems with Significant Converter-Interfaced Generation. IEEE Trans. Power Syst. 2020. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Zafar, J.; Khadem, S.K.; Collinson, A.; Murchie, K.C.; Coffele, F.; Burt, G.M. Fast Frequency Response From Energy Storage Systems—A Review of Grid Standards, Projects and Technical Issues. IEEE Trans. Smart Grid 2020, 11, 1566–1581. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimzadeh, E.; Blaabjerg, F.; Wang, X.; Bak, C.L. Harmonic Stability and Resonance Analysis in Large PMSG-Based Wind Power Plants. IEEE Trans. Sustain. Energy 2018, 9, 12–23. [Google Scholar] [CrossRef]
- Ma, S.; Geng, H.; Liu, L.; Yang, G.; Pal, B.C. Grid-Synchronization Stability Improvement of Large Scale Wind Farm During Severe Grid Fault. IEEE Trans. Power Syst. 2018, 33, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Xin, H.; Wang, Z.; Zhang, L.; Wu, K.; Hu, J. Transient Stability Analysis and Control Design of Droop-Controlled Voltage Source Converters Considering Current Limitation. IEEE Trans. Smart Grid 2019, 10, 578–591. [Google Scholar] [CrossRef]
- Bae, Y.; Vu, T.; Kim, R. Implemental Control Strategy for Grid Stabilization of Grid-Connected PV System Based on German Grid Code in Symmetrical Low-to-Medium Voltage Network. IEEE Trans. Energy Convers. 2013, 28, 619–631. [Google Scholar] [CrossRef]
- Matevosyan, J.; Badrzadeh, B.; Prevost, T.; Quitmann, E.; Ramasubramanian, D.; Urdal, H.; Achilles, S.; MacDowell, J.; Huang, S.H.; Vital, V.; et al. Grid-Forming Inverters: Are They the Key for High Renewable Penetration? IEEE Power Energy Mag. 2019, 17, 89–98. [Google Scholar] [CrossRef]
- Peyghami, S.; Davari, P.; Fotuhi-Firuzabad, M.; Blaabjerg, F. Standard Test Systems for Modern Power System Analysis: An Overview. IEEE Ind. Electron. Mag. 2019, 13, 86–105. [Google Scholar] [CrossRef]
- Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodriguez, P. Control of power converters in AC microgrids. IEEE Trans. Power Electron. 2012, 27, 4734–4749. [Google Scholar] [CrossRef]
- Ackermann, T. (Ed.) Wind Power in Power Systems; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
Location | Date | Duration (h) | Affected People (million) | Causes |
---|---|---|---|---|
India [49] | July 2012 | 15 | 620 | Transmission line overload |
Bangladesh [50] | November 2014 | 24 | 150 | HVDC station outage |
South Australia [51] | September 2016 | 6 | 1.7 | Transmission line outage and cascading events |
The US [52] | August 2016 | 6 | 1.7 | Transmission line outage and cascading events |
The US [53] | March 2017 | 11 | 21 | Transmission line outage and cascading events |
The US [54] | September 2017 | 5 | 7.6 | Transmission line trip |
Brazil [55] | March 2018 | 1 | 10 | Transmission line trip |
Canada [56] | December 2018 | 4 | 0.6 | Wind reached speed of 100 km/h |
PE-based Power System Security Challenges | Contingencies derived by PE-based units’ design | System frequency support | Lack of inertia/high ROCOF [65] |
Fast frequency response limitations [66] | |||
Small-signal stability | Harmonic stability & Oscillations [67] | ||
Grid-tied VSC synchronization [68] | |||
Undesired contingencies | Grid codes requirement | VSC’s current limitations [69] | |
Grid codes for the VSC’s fault ride through [70] | |||
Synchronization challenges | Wrong frequency estimation & PLL transient response [58,62] | ||
Lack of standardization [71] |
Generator Number | Nominal Power [MVA] | Moment of Inertia [s] |
---|---|---|
G1 (Genetator connected to Bus 39) | 10000 | 5 |
G2 (Genetator connected to Bus 31) | 700 | 4.329 |
G3 (Genetator connected to Bus 32) | 800 | 4.475 |
G4 (Genetator connected to Bus 33) | 800 | 3.575 |
G5 (Genetator connected to Bus 34) | 300 | 4.333 |
G6 (Genetator connected to Bus 35) | 800 | 4.35 |
G7 (Genetator connected to Bus 36) | 700 | 3.771 |
G8 (Genetator connected to Bus 37) | 1000 | 3.471 |
G9 (Genetator connected to Bus 38) | 1000 | 3.45 |
G10 (Genetator connected to Bus 30) | 1000 | 4.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakerighadi, B.; Peyghami, S.; Ebrahimzadeh, E.; Blaabjerg, F.; Leth Back, C. A New Guideline for Security Assessment of Power Systems with a High Penetration of Wind Turbines. Appl. Sci. 2020, 10, 3190. https://doi.org/10.3390/app10093190
Shakerighadi B, Peyghami S, Ebrahimzadeh E, Blaabjerg F, Leth Back C. A New Guideline for Security Assessment of Power Systems with a High Penetration of Wind Turbines. Applied Sciences. 2020; 10(9):3190. https://doi.org/10.3390/app10093190
Chicago/Turabian StyleShakerighadi, Bahram, Saeed Peyghami, Esmaeil Ebrahimzadeh, Frede Blaabjerg, and Claus Leth Back. 2020. "A New Guideline for Security Assessment of Power Systems with a High Penetration of Wind Turbines" Applied Sciences 10, no. 9: 3190. https://doi.org/10.3390/app10093190
APA StyleShakerighadi, B., Peyghami, S., Ebrahimzadeh, E., Blaabjerg, F., & Leth Back, C. (2020). A New Guideline for Security Assessment of Power Systems with a High Penetration of Wind Turbines. Applied Sciences, 10(9), 3190. https://doi.org/10.3390/app10093190