Removal of Arsenic, Chromium and Uranium from Water Sources by Novel Nanostructured Materials Including Graphene-Based Modified Adsorbents: A Mini Review of Recent Developments
Abstract
:1. Introduction
2. Nanostructure Materials for Arsenic Removal
2.1. Arsenic (As)
2.2. Application of Hydrous Nanostructure Iron(III)–Titanium(IV) Binary Oxide for As(III) and As(V) Removal
2.3. Application of Iron(III)–Copper(II) Binary Oxide for As(V) and As(III) Removal
2.4. Application of Hierarchically Porous CeO2–ZrO2 Nanospheres for As(V) and As(III) Removal
2.5. Application of Graphene Oxide-Ferric Hydroxide GO/Fe(OH)3 (GO–Fe) Composites for As(V) Removal
2.6. Application of Magnetite Fe3O4-Reduced Graphite Oxide–MnO2 Nanocomposites for As(V) and As(III) Removal
2.7. Application of Graphene Oxide-Hydrated Zirconium Oxide for As(V) and As(III) Removal
2.8. Application of Nano-Scaled Activated Carbon Modified by Iron and Manganese Oxides for As(V) Removal
3. Nanostructured Materials for Chromium Removal
3.1. Chromium (Cr)
3.2. Application of NiO Nanoparticles for Cr(VI) Removal
3.3. Application of Graphene Oxide Functionalized with Magnetic Cyclodextrin–Chitosan for Cr(VI) Removal
3.4. Application of Poly-Pyrrole Graphene Oxide Nanocomposite (PPy–GO NC) for Cr(VI) Removal
3.5. Application of a Reductive and Magnetic Graphene/Fe3O4 Composite for Cr(VI) Removal
3.6. Application of Graphene Oxide/Poly-Amido-Amine Dendrimer (GO/PAMAMs) Composites for Cr(VI) Removal
4. Nanostructured Materials for Uranium Removal
4.1. Uranium (U)
4.2. Application of Fe3O4@SiO2 Composite Nanoparticles for U(VI) Removal
4.3. Application of a Novel Graphene Oxide-Activated Carbon Felt Composite for U(VI) Removal
4.4. Application of a Three-Dimensional Layered Double Hydroxide-Graphene Hybrid Material for U(VI) Removal
4.5. Application of Graphene Oxide and Its Amine-Functionalized Composite (GO-NH2) for U(VI) Removal
4.6. Application of a Novel Graphene Oxide-Immobilized Saccharomyces Cerevisiae Gel Beads for U(VI) Removal
4.7. Application of Carboxyl-Functionalized Graphene Oxide (COOH-GO) Material for U(VI) Removal
4.8. Application of a Composite Material (GO-DTPAA) for U(VI) Removal
4.9. Application of a Magnetic Reduced-Graphene Oxide/Tea Waste Composite for U(VI) Removal
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hashim, M.A.; Mukhopadhyay, S.; Sahu, J.N.; Sengupta, B. Remediation technologies for heavy metal contaminated groundwater. J. Environ. Manag. 2011, 92, 2355–2388. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.W. Nanostructured materials -mind over matter. Nanostruct. Mater. 1993, 3, 1–18. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, M. Nanomaterials in pollution trace detection and environmental improvement. Nano Today 2010, 5, 128–142. [Google Scholar] [CrossRef]
- Danô, M.; Viglašová, E.; Galamboŝ, M.; Rajec, P.; Novák, I. Sorption behaviour of pertechnetate on oxidized and reduced surface of activated carbon. J. Radioanal. Nucl. Chem. 2017, 314, 2219–2227. [Google Scholar] [CrossRef]
- Viglašová, E.; Galamboš, M.; Danková, Z.; Krivosudský, L.; Lengauer, C.L.; Hood-Nowotny, R.; Soja, G.; Rompel, A.; Matík, M.; Briančin, J. Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal. Waste Manag. 2018, 79, 385–394. [Google Scholar] [CrossRef]
- Katsoyiannis, I.A.; Zouboulis, A.I. Comparative evaluation of conventional and alternative methods for the removal of arsenic from contaminated groundwaters. Rev. Environ. Health 2006, 21, 25–41. [Google Scholar] [CrossRef]
- Katsoyiannis, I.A.; Gachet, C.; von Gunten, U. Fate of Cr (III) during Ozonation of Secondary Municipal Wastewater Effluent. Ozone Sci. Eng. 2018, 40, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Katsoyiannis, I.A.; Zouboulis, A.I. Removal of uranium from contaminated drinking water: A mini review of available treatment methods. Desalin. Water Treat. 2013, 51, 2915–2925. [Google Scholar] [CrossRef]
- Katsoyiannis, I.A.; Xanthopoulou, M.; Zouboulis, A.I. Cr (VI) Femoval from Ground Waters by Ferrous Iron Redox-Assisted Coagulation in a Continuous Treatment Unit Comprising a Plug Flow Pipe Reactor and Downflow Sand Filtration. Appl. Sci. 2020, 10, 802. [Google Scholar] [CrossRef] [Green Version]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Katsoyiannis, I.A.; Mitrakas, M.; Zouboulis, A.I. Arsenic occurrence in Europe: Emphasis in Greece and description of the applied full-scale treatment plants. Desalin. Water Treat. 2015, 54, 2100–2107. [Google Scholar] [CrossRef]
- World Health Organization. Preventing Disease through Healthy Environments; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- U.S. Environmental Protection Agency. Arsenic Compounds; EPA: Washington, DC, USA, 2012. [Google Scholar]
- Appelo, T.; International Association of Hydrogeologists; Netherlands National Committee. Arsenic in Groundwater: A World Problem. In Proceedings of the Symposium Organized by IAH’s Dutch Chapter and the Netherlands’ Hydrological Society, Utrecht, The Netherlands, 29 November 2006. [Google Scholar]
- Bissen, M.; Frimmel, F.H. Arsenic—A Review. Part I: Occurrence, Toxicity, Speciation, Mobility. Acta Hydroch. Hydrob. 2003, 31, 9–18. [Google Scholar] [CrossRef]
- Katsoyiannis, I.A.; Voegelin, A.; Zouboulis, A.I.; Hug, S.J. Enhanced As (III) oxidation and removal by combined use of zero valent iron and hydrogen peroxide in aerated waters at neutral pH values. J. Hazard. Mater. 2015, 297, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cullen, W.R.; Reimer, K.J. Arsenic speciation in the environment. Chem. Rev. 1989, 89, 713–764. [Google Scholar] [CrossRef] [Green Version]
- Katsoyiannis, I.; Tzollas, N.; Tolkou, A.; Mitrakas, M.; Ernst, M.; Zouboulis, A. Use of novel composite coagulants for arsenic removal from waters-experimental insight for the application of polyferric sulfate (PFS). Sustainability 2017, 9, 590. [Google Scholar] [CrossRef] [Green Version]
- Hering, J.; Chen, P.; Wilkie, J.; Elimelech, M. Arsenic Removal from Drinking Water during Coagulation. J. Environ. Eng. 1997, 123, 800–807. [Google Scholar] [CrossRef]
- Gupta, K.; Ghosh, U.C. Arsenic removal using hydrous nanostructure iron(III)–titanium(IV) binary mixed oxide from aqueous solution. J. Hazard. Mater. 2008, 161, 884–892. [Google Scholar] [CrossRef]
- Zhou, W.; Pan, K.; Tian, C.; Qu, Y.; Lu, P.; Sun, C.C. Mesoporous TiO2/r-Fe2O3: Bifunctional composites for effective elimination of arsenite contamination through simultaneous photocatalytic oxidation and adsorption. J. Phys. Chem. 2008, 112, 19584–19589. [Google Scholar] [CrossRef]
- Arcy, M.D.; Bluck, M.; Vilar, R. Adsorption kinetics, capacity and mechanism of arsenate and phosphate on a bifunctional TiO2–Fe2O3 bi-composite. J. Colloid Interface Sci. 2011, 364, 205–212. [Google Scholar]
- Martinson, C.A.; Reddy, K.J. Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J. Colloid Interface Sci. 2009, 336, 406–411. [Google Scholar] [CrossRef]
- Zhang, G.; Ren, Z.; Zhang, X.; Chen, J. Nanostructured iron (III)-copper (II) binary oxide: A novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res. 2013, 47, 4022–4031. [Google Scholar] [CrossRef] [PubMed]
- Jacukowicz-Sobala, I.; Ocinski, D.; Mazur, P.; Stanisławska, E.; Kociołek-Balawejder, E. Cu(II)-Fe(III) oxide doped anion exchangers—Multifunctional composites for arsenite removal from water via As(III) adsorption and oxidation. J. Hazard. Mater. 2020. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, J.; Wang, L.; Sheng, G.; Liu, J.; Yu, H.; Huang, X.-J. Enhanced arsenic removal from water by hierarchically porous CeO2–ZrO2 nanospheres: Role of surface- and structure-dependent properties. J. Hazard. Mater. 2013, 260, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Avouris, P.; Dimitrakopoulos, C. Graphene: Synthesis and applications. Mater Today 2012, 15, 86–97. [Google Scholar] [CrossRef]
- Weiss, N.O.; Zhou, H.; Liao, L.; Liu, Y.; Jiang, S.; Huang, Y.; Duan, X. Graphene: An Emerging Electronic Material. Adv. Mater. 2012, 24, 5782–5825. [Google Scholar] [CrossRef]
- Kemp, K.C.; Seema, H.; Saleh, M.; Le, N.H.; Mahesh, K.; Chandra, V.; Kim, K.S. Environmental applications using graphene composites: Water remediation and gas adsorption. Nanoscale 2013, 5, 3149–3171. [Google Scholar] [CrossRef] [Green Version]
- Sundramoorthy, A.K.; Gunasekaran, S. Applications of graphene in quality assurance and safety of food. TrAC Trends Anal. Chem. 2014, 60, 36–53. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Dwivedi, V.; Chi, C.; Wu, J. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J. Hazard. Mater. 2010, 182, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Katsoyiannis, I.A.; Zouboulis, A.I. Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res. 2002, 36, 5141–5155. [Google Scholar] [CrossRef]
- Luo, X.; Wang, C.; Luo, S.; Dong, R.; Tu, X.; Zeng, G. Adsorption of As (III) and As (V) from water using magnetite Fe3O4-reduced graphite oxide–MnO2 nanocomposites. Chem. Eng. J. 2012, 187, 45–52. [Google Scholar] [CrossRef]
- Simeonidis, K.; Gkinis, T.; Tresintsi, S.; Martinez-Boubeta, C.; Vourlias, G.; Tsiaoussis, I.; Stavropoulos, G.; Mitrakas, M.; Angelakeris, M. Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents. Chem. Eng. J. 2011, 168, 1008–1015. [Google Scholar] [CrossRef]
- Cui, H.; Li, Q.; Gao, S.; Shang, J.K. Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J. Ind. Eng. Chem. 2012, 18, 1418–1427. [Google Scholar] [CrossRef]
- Luo, X.; Wang, C.; Wang, L.; Deng, F.; Luo, S.; Tu, X.; Au, C. Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water. Chem. Eng. J. 2013, 220, 98–106. [Google Scholar] [CrossRef]
- Gallios, G.; Tolkou, A.; Katsoyiannis, I.; Stefusova, K.; Vaclavikova, M.; Deliyanni, E. Adsorption of Arsenate by Nano Scaled Activated Carbon Modified by Iron and Manganese Oxides. Sustainability 2017, 9, 1684. [Google Scholar] [CrossRef] [Green Version]
- Manna, B.R.; Dey, S.; Debnath, S.; Ghosh, U.C. Removal of arsenic from groundwater using crystalline hydrous ferric oxide (CHFO). Water Qual. Res. J. Can. 2003, 38, 93–210. [Google Scholar] [CrossRef] [Green Version]
- Manna, B.R.; Dasgupta, M.; Ghosh, U.C. Crystalline hydrous titanium (IV) oxide (CHTO): An arsenic (III) scavenger from natural water. J. Water Supply Res. Tehnol. 2004, 53, 483–495. [Google Scholar] [CrossRef]
- Kanel, S.R.; Manning, B.; Charlet, L.; Choi, H. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 2005, 39, 1291–1298. [Google Scholar] [CrossRef]
- Pena, M.E.; Korfiatis, G.P.; Patel, M.; Lippincott, L.; Meng, X. Adsorption of As (V) and As (III) by nanocrystalline titanium dioxide. Water Res. 2005, 39, 2327–2337. [Google Scholar] [CrossRef]
- Manna, B.; Ghosh, U.C. Adsorption of arsenic from aqueous solution on synthetic hydrous stannic oxide. J. Hazard. Mater. 2007, 144, 522–531. [Google Scholar] [CrossRef]
- Deliyanni, E.A.; Bakoyannakis, D.N.; Zouboulis, A.I.; Matis, K.A. Sorption of As (V) ions by akaganéite-type nanocrystals. Chemosphere 2003, 50, 155–163. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Chromium in Drinking Water; EPA: Washington, DC, USA, 2010. [Google Scholar]
- U.S. Environmental Protection Agency; IRIS. Toxicological Review of Hexavalent Chromium; EPA: Washington, DC, USA, 2010. [Google Scholar]
- World Health Organization. Chromium in Drinking-Water; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- U.S. California Environmental Protection Agency. Chromium-6 Drinking Water MCL; U.S. California Environmental Protection Agency: Sacramento, CA, USA, 2014. [Google Scholar]
- Sharma, S.K.; Petrusevski, B.; Amy, G. Chromium removal from water: A review. J. Water Supply Res. Tehnol. 2008, 57, 541–553. [Google Scholar] [CrossRef]
- Rai, D.; Eary, L.E.; Zachara, J.M. Environmental chemistry of chromium. Sci. Total. Environ. 1989, 86, 15–23. [Google Scholar] [CrossRef]
- Mahmood, T.; Saddique, M.T.; Naeem, A.; Mustafa, S.; Hussain, J.; Dilara, B. Cation exchange removal of Zn from aqueous solution by NiO. J. Non Cryst. Solids. 2011, 357, 1016–1020. [Google Scholar] [CrossRef]
- Behnajady, M.A.; Bimeghdar, S. Synthesis of mesoporous NiO nanoparticles and their application in the adsorption of Cr(VI). Chem. Eng. J. 2014, 239, 105–113. [Google Scholar] [CrossRef]
- Li, L.; Fan, L.; Sun, M.; Qiu, H.; Li, X.; Duan, H.; Luo, C. Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin–chitosan. Colloids Surf. B Biointerfaces. 2013, 107, 76–83. [Google Scholar] [CrossRef]
- Mura, P. Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: A review. J. Pharm. Biomed. Anal. 2014, 101, 238–250. [Google Scholar] [CrossRef]
- Samuel, M.S.; Bhattacharya, J.; Raj, S.; Santhanam, N.; Singh, H.; Singh, N.D.P. Efficient removal of Chromium (VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. Int. J. Biol. Macromol. 2019, 121, 285–292. [Google Scholar] [CrossRef]
- Setshedi, K.Z.; Bhaumik, M.; Onyango, M.S.; & Maity, A. High-performance towards Cr (VI) removal using multi-active sites of polypyrrole–graphene oxide nanocomposites: Batch and column studies. Chem. Eng. J. 2015, 262, 921–931. [Google Scholar] [CrossRef]
- Hou, T.; Kong, L.; Guo, X.; Wu, Y.; Wang, F.; Wen, Y.; Yang, H. Magnetic ferrous-doped graphene for improving Cr (VI) removal. Mater. Res. Express 2016, 3, 045006. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, F.; Peng, Z. Adsorption mechanism of Cr(VI) onto GO/PAMAMs composites. Sci. Rep. 2019, 9, 3663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, A.; Xie, J.; Wang, W.; Yu, L.; Liu, Q.Y. A novel method for amino starch preparation and its adsorption for Cu(II) and Cr(VI). J. Hazard. Mater. 2010, 181, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, G.S.; Foglia, M.L.; Camporotondi, D.E.; Tuttolomondo, M.V.; Desimone, M.F.; Diaz, L.E. A functional material that combines the Cr(VI) reduction activity of Burkholderia sp. with the adsorbent capacity of sol-gel materials. J. Mater. Chem. 2011, 21, 6359–6364. [Google Scholar] [CrossRef]
- Asuha, S.; Zhou, X.G.; Zhao, S. Adsorption of methyl orange and Cr(VI) on mesoporous TiO2 prepared by hydrothermal method. J. Hazard. Mater. 2010, 181, 204–210. [Google Scholar] [CrossRef]
- RajivGandhi, M.; Viswanathan, N.; Meenakshi, S. Preparation and application of alumina/chitosan biocomposite. Int. J. Biol. Macromol. 2010, 47, 146–154. [Google Scholar] [CrossRef]
- Bishnoi, N.R.; Bajaj, M.; Sharma, N.; Gupta, A. Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. Bioresour. Technol. 2004, 91, 305–307. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, C.; Cheng, W.; Wang, X. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J. Hazard. Mater. 2014, 280, 399–408. [Google Scholar] [CrossRef]
- Fan, F.L.; Qin, Z.; Bai, J.; Rong, W.D.; Fan, F.Y.; Tian, W.; Wu, X.L.; Wang, Y.; Zhao, L. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J. Environ. Radioact. 2012, 106, 40–46. [Google Scholar] [CrossRef]
- Chen, S.; Hong, J.; Yang, H.; Yang, J. Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. J. Environ. Radioact. 2013, 126, 253–258. [Google Scholar] [CrossRef]
- World Health Organization. Uranium in Drinking Water; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Katsoyiannis, I.A.; Althoff, W.H.; Bartel, H.; Jekel, M. The effect of groundwater composition on uranium(VI) sorption onto bacteriogenic iron oxides. Water Res. 2006, 40, 3646–3652. [Google Scholar] [CrossRef]
- Barton, C.S.; Stewart, D.I.; Morris, K.; Bryant, D.E. Performance of three resin-based materials for treating uranium-contaminated groundwater within a PRB. J. Hazard. Mater. 2004, 116, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Gu, B.; Ku, Y.K.; Jardine, P.M. Sorption and binary exchange of nitrate, sulfate, and uranium on an anion-exchange resin. Environ. Sci. Technol. 2004, 38, 3184–3188. [Google Scholar] [CrossRef]
- Favre-Reguillon, A.; Lebuzit, G.; Murat, D.; Foos, J.; Mansour, C.; Draye, M. Selective removal of dissolved uranium in drinking water by nanofiltration. Water Res. 2008, 42, 1160–1166. [Google Scholar] [CrossRef]
- Lin, K.L.; Chu, M.L.; Shieh, M.C. Treatment of uranium containing effluents with reverse osmosis process. Desalination 1987, 61, 125–136. [Google Scholar] [CrossRef]
- Raff, O.; Wilken, R.D. Removal of dissolved uranium by nanofiltration. Desalination 1999, 122, 147–150. [Google Scholar] [CrossRef]
- Das, D.; Sureshkumar, M.K.; Koley, S.; Mithal, N.; Pillai, C.G.S. Sorption of uranium on magnetite nanoparticles. J. Radioanal. Nucl. Chem. 2010, 285, 447–454. [Google Scholar] [CrossRef]
- Ching-kuo, D.H.; Langmuir, D. Adsorption of uranyl onto ferric oxyhydroxides: Application of the surface complexation site-binding model. Geochim. Cosmochim. Acta 1985, 49, 1931–1941. [Google Scholar] [CrossRef]
- Katsoyiannis, I.A. Carbonate effects and pH-dependence of uranium sorption onto bacteriogenic iron oxides: Kinetic and equilibrium studies. J. Hazard. Mater. 2007, 139, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Wazne, M.; Korfiatis, G.P.; Meng, X. Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environ. Sci. Technol. 2003, 37, 3619–3624. [Google Scholar] [CrossRef]
- Li, Z.; Chen, F.; Yuan, L.; Liu, Y.; Zhao, Y.; Chai, Z. Uranium (VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem. Eng. 2012, 210, 539–546. [Google Scholar] [CrossRef]
- Tan, L.; Wang, Y.; Liu, Q.; Wang, J.; Jing, X.; Liu, L.; Shi, W. Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material. Chem. Eng. 2015, 259, 752–760. [Google Scholar] [CrossRef]
- Liu, S.; Li, S.; Zhang, H.; Wu, L.; Sun, L.; Ma, J. Removal of uranium(VI) from aqueous solution using graphene oxide and its amine-functionalized composite. J. Radioanal. Nucl. Chem. 2016, 309, 607–614. [Google Scholar] [CrossRef]
- Misaelides, P.; Godelitsas, A.; Filippidis, A.; Charistos, D.; Anousis, I. Thorium and uranium uptake by natural zeolitic materials. Sci. Total Environ. 1995, 173, 237–246. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J. Uranium removal by novel graphene oxide-immobilized Saccharomyces cerevisiae gel beads. J. Environ. Radioact. 2016, 162, 134–145. [Google Scholar] [CrossRef]
- Mohamud, H.; Ivanov, P.; Russell, B.C.; Regan, P.H.; Ward, N.I. Selective sorption of uranium from aqueous solution by graphene oxide-modified materials. J. Radioanal. Nucl. Chem. 2018, 316, 839–848. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Ouyang, J.; Luo, J.; Sun, L.; Huang, G.; Ma, J. Removal of uranium(VI) from aqueous solution using graphene oxide functionalized with diethylenetriaminepentaacetic phenylenediamine. J. Nucl. Sci. Technol. 2018, 55, 781–791. [Google Scholar] [CrossRef]
- Yang, A.; Zhu, Y.; Li, P.; Huang, C.P. Preparation of a magnetic reduced-graphene oxide/tea waste composite for high-efficiency sorption of uranium. Sci. Rep. 2019, 9, 6471. [Google Scholar] [CrossRef] [Green Version]
- Han, R.; Zou, W.; Wang, Y.; Zhu, L. Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: Discussion of adsorption isotherms and pH effect. J. Environ. Radioact. 2007, 93, 127–143. [Google Scholar] [CrossRef]
- Donat, R. The removal of uranium (VI) from aqueous solutions onto natural sepiolite. J. Chem. Thermodyn. 2009, 41, 829–835. [Google Scholar] [CrossRef]
- Humelnicu, D.; Popovici, E.; Dvininov, E.; Mita, C. Study on the retention of uranyl ions on modified clays with titanium oxide. J. Radioanal. Nucl. Chem. 2009, 279, 131–136. [Google Scholar] [CrossRef]
- Wang, J.S.; Peng, R.T.; Yang, J.H.; Liu, Y.C.; Hu, X.J. Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions. Carbohydr. Polym. 2011, 84, 1169–1175. [Google Scholar] [CrossRef]
- Yusan, S.; Erenturk, S. Sorption behaviors of uranium (VI) ions on α-FeOOH. Desalination 2011, 269, 58–66. [Google Scholar] [CrossRef]
- Dimiropoulos, V.; Katsoyiannis, I.A.; Zouboulis, A.I.; Noli, F.; Simeonidis, K.; Mitrakas, M. Enhanced U(VI) removal from drinking water by nanostructured binary Fe/Mn oxy-hydroxides. J. Water Process. Eng. 2015, 7, 227–236. [Google Scholar] [CrossRef]
Novel Nano-Material | Fe(III)–Ti(IV) Oxide (NHITO) | Fe(III)-Cu(II) Oxide | CeO2–ZrO2 | GO/Fe(OH)3 | Fe3O4-RGO–MnO2 | GO–ZrO(OH)2 |
---|---|---|---|---|---|---|
As species removal | As(III) | As(V)/As(III) | As(V)/As(III) | As (V) | As(V)/As(III) | As(V)/As(III) |
Application | Groundwater | Simulated Ground water | Contaminated natural water | Simulated drinking | Simulated Ground water | Simulated drinking |
Pore size (nm) | 11 | 4.3 | 90 | - | - | 2.3 |
Dose (g L−1) | 2 | 0.2 | 0.2 | - | 0.005 | 0.5 |
C initial (mg L−1) | 0.11 | 10 | 0.01 | 51 | 5 | 1 |
pH | 7.0 | 7.0 | 6.9 | 4.0–9.0 | 7.0 | 2.0–7.0 |
Adsorption capacity (mg g−1) | 0.1 | 83/122 | 27/9 | 24 | 12/14 | 85/95 |
BET (m2 g−1) | 78 | 282 | 30 | - | 114 | 421 |
References | Gupta et al. (2009) [20] | Zhang et al. (2013) [24] | Xu et al. (2013) [26] | Zhang et al. (2010) [33] | Luo et al. (2012) [35] | Luo et al. (2013) [38] |
Sorbent Material | pH | Langmuir Qmax Capacity (mg g−1) | Reference | |
---|---|---|---|---|
As(III) | As(V) | |||
Crystalline hydrous ferric oxide | 7.0 | 33 | 25 | Manna et al. (2003) [40] |
Crystalline hydrous titanium oxide | 7.0 | 32 | - | Manna et al. (2004) [41] |
Nanoscale zero valent iron | 7.0 | 3 | - | Kenel et al. (2005) [42] |
Nano-TiO2 | 7.0 | 60 | 37 | Pena et al. (2005) [43] |
Hydrous stannic oxide | 7.0 | 16 | 4 | Manna et al. (2007) [44] |
Akaganeite nanocrystal | 7.5 | - | 134 | Deliyanni et al. (2003) [45] |
Novel Nano-Material | NiO | CCGO | CS-GO | PPy–GO NC | HR-M-GO/Fe3O4 | GO/PAMAMs |
---|---|---|---|---|---|---|
Cr species removal | Cr(VI) | Cr(VI) | Cr(VI) | Cr(VI) | Cr(VI) | Cr(VI) |
Dose (g L−1) | 0.6 | 1 | 2 | 2 | 0.5 | 0.5 |
C initial (mg L−1) | 20 | 50 | 50 | 10 | 10 | 50 |
pH | 4.7 | 3.0 | 2.0 | 2.0 | 3.0 | 2.5 |
Adsorption capacity (mg g−1) | 5 | 68 | 104 | 625 | 32 | 211 |
References | Behnajady and Bimeghdar (2014) [53] | Li et al. (2013) [54] | Samuel et al. (2019) [56] | Setshedi et al. (2015) [57] | Hou et al. (2016) [58] | Liu et al. (2019) [59] |
Sorbent Material | Sorption Capacity (mg g−1) | Reference |
---|---|---|
Cr (VI) | ||
Amino starch | 12 | Dong et al. (2010) [60] |
Silica matrices | 18 | Alvarez et al. (2011) [61] |
Mesoporous TiO2 | 33 | Asuha et al. (2010) [62] |
Alumina | 4 | Rajiv Gandhi et al. (2010) [63] |
Alumina/chitosan composite | 9 | Rajiv Gandhi et al. (2010) [63] |
Activated Alumina | 2 | Bishnoi et al. (2004) [64] |
Novel Nano-Material | Fe3O4@SiO2 | GO | GO-ACF | rGO/NiAl–LDH | GO-NH2 | SA-GO | COOH-GO | GO-DTPAA | rGO/Fe3O4/TW |
---|---|---|---|---|---|---|---|---|---|
Dose (g L−1) | 2.5 | 0.4 | 0.2 | 0.5 | 0.2 | 0.1 | 1.0 | 0.1 | 0.5 |
C initial (mg L−1) | 50 | 119 | 50 | 130 | 60 | 35.6 | 10 | 50 | 10 |
pH | 6.0 | 4.0 | 5.5 | 4.0 | 5.5 | 5.0 | 4.0 | 6.5 | 5.0 |
Adsorption capacity (mg g−1) | 52 | 299 | 298 | 278 | 215 | 162 | 169 | 485 | 105 |
References | Fan et al. (2012) [66] | Li et al. (2012) [79] | Chen et al. (2013) [67] | Tan et al. (2015) [80] | Liu et al. (2016) [81] | Chen and Wang (2016) [83] | Mohamud et al. (2018) [84] | Liu et al. (2018) [85] | Yang et al. (2019) [86] |
Sorbent Material | pH | Sorption Capacity (mg g−1) | Reference |
---|---|---|---|
Cr (VI) | |||
Manganese oxide coated zeolite | 4.0 | 15 | Han et al. (2007) [87] |
Natural sepiolite | 3.0 | 35 | Donat (2009) [88] |
Modified clays with titanium oxide | 3.5 | 0.6 | Humelnicu et al. (2009) [89] |
Magnetite nanoparticles | 7.0 | 5 | Das et al. (2010) [75] |
Ethylenediamine-modified chitosan | 3.0 | 83 | Wang et al. (2011) [90] |
Goethite (α-FeOOH) | 6.0 | 34 | Yusan et al. (2011) [91] |
Binary iron–manganese oxy-hydroxides (FMHO) | 6.5 | 133 | Dimiropoulos et al. (2015) [92] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolkou, A.K.; Katsoyiannis, I.A.; Zouboulis, A.I. Removal of Arsenic, Chromium and Uranium from Water Sources by Novel Nanostructured Materials Including Graphene-Based Modified Adsorbents: A Mini Review of Recent Developments. Appl. Sci. 2020, 10, 3241. https://doi.org/10.3390/app10093241
Tolkou AK, Katsoyiannis IA, Zouboulis AI. Removal of Arsenic, Chromium and Uranium from Water Sources by Novel Nanostructured Materials Including Graphene-Based Modified Adsorbents: A Mini Review of Recent Developments. Applied Sciences. 2020; 10(9):3241. https://doi.org/10.3390/app10093241
Chicago/Turabian StyleTolkou, Athanasia K., Ioannis A. Katsoyiannis, and Anastasios I. Zouboulis. 2020. "Removal of Arsenic, Chromium and Uranium from Water Sources by Novel Nanostructured Materials Including Graphene-Based Modified Adsorbents: A Mini Review of Recent Developments" Applied Sciences 10, no. 9: 3241. https://doi.org/10.3390/app10093241
APA StyleTolkou, A. K., Katsoyiannis, I. A., & Zouboulis, A. I. (2020). Removal of Arsenic, Chromium and Uranium from Water Sources by Novel Nanostructured Materials Including Graphene-Based Modified Adsorbents: A Mini Review of Recent Developments. Applied Sciences, 10(9), 3241. https://doi.org/10.3390/app10093241