Flow Regime, Slug Frequency and Wavelet Analysis of Air/Newtonian and Air/non-Newtonian Two-Phase Flow
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.2.1. Slug Velocity
2.2.2. Slug Frequency
2.2.3. Wavelet Analysis
Contentious Wavelet Transform (CWT)
Discrete Wavelet Transform (DWT)
Daubechies Wavelet
Wavelet Packet Analysis
Wavelet Entropy
Wavelet Packet Analysis of the Experimental Data
3. Results and Discussions
3.1. Flow Regime Mapping for Horizontal Flow
3.1.1. Air/Newtonian Flow Map
3.1.2. Air/non-Newtonian flow map
3.1.3. Air/Newtonian Two-phase Flow
3.1.4. Air/non-Newtonian Two-Phase Flow
3.2. Wavelet Spectrum Analysis
Wavelet Entropy Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Superficial Liquid Velocity | |
Liquid Inlet Velocity | |
ρw | Water Density = 996 Kg/M3 |
Pipe Length | |
No-Slip Mixture Velocity | |
fs | Slug Frequency |
fsn | Slug Frequency for Non-Newtonian Fluid |
Froude Number | |
No-Slip Mixture Velocity for Non-Newtonian Fluid | |
Froude Number for Non-Newtonian Fluid | |
Rew | Water Reynolds Number |
ρn | Non-Newtonian Density = 1002 Kg/M3 |
σ | Shear Stress |
x | Signal |
Wavelet Base | |
k | Wavelet Level |
n | Power Law Index |
Superficial Gas Velocity | |
Gas Inlet Velocity | |
μw | Water Viscosity 998 At 20 °C |
d | Pipe Diameter |
λ | Liquid Volume Fraction |
True Average Gas Velocity in Multiphase Flow | |
g | Acceleration due to gravity |
Minimum Slug Frequency in The Graph = 6 m/s | |
Non-Newtonian Liquid Inlet Velocity | |
Ren | Non-Newtonian Reynolds Number |
Shear Rate | |
Apparent Viscosity | |
Wavelet Transform | |
Scale Function | |
j | Wavelet Scales |
αg | Void fraction |
References
- Epelle, E.I.; Gerogiorgis, D.I. A review of technological advances and open challenges for oil and gas drilling systems engineering. AIChE J. 2020, 66, e16842. [Google Scholar] [CrossRef]
- Zahid, A.A.; Rehman, S.R.; Rushd, S.; Hasan, A.; Rahman, M.A. Experimental investigation of multiphase flow behavior in drilling annuli using high speed visualization technique. Front. Energy 2018. [Google Scholar] [CrossRef]
- Khan, M.S.; Bavoh, C.B.; Partoon, B.; Nashed, O.; Lal, B.; Mellon, N.B. Impacts of ammonium based ionic liquids alkyl chain on thermodynamic hydrate inhibition for carbon dioxide rich binary gas. J. Mol. Liq. 2018, 261, 283–290. [Google Scholar] [CrossRef]
- Kamyab, M.; Rasouli, V.; Cavanough, G.; Mandal, S. Challenges of cuttings transport in micro- borehole coiled tubing drilling for mineral exploration. WIT Trans. Eng. Sci. 2013, 81, 109–120. [Google Scholar]
- Kelin, W.; Tie, Y.; Xiaofeng, S.; Shuai, S.; Shizhu, L. Review and analysis of cuttings transport in complex structural wells. Open Fuels Energy Sci. J. 2013, 6, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Qasim, A.; Khan, M.S.; Lal, B.; Shariff, A.M. A perspective on dual purpose gas hydrate and corrosion inhibitors for flow assurance. J. Pet. Sci. Eng. 2019, 183, 106418. [Google Scholar] [CrossRef]
- Taitel, Y.; Dukler, A.E. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J. 1976, 22, 47–55. [Google Scholar] [CrossRef]
- Shojaei, M.J.; Rodríguez de Castro, A.; Méheust, Y.; Shokri, N. Dynamics of foam flow in a rock fracture: Effects of aperture variation on apparent shear viscosity and bubble morphology. J. Colloid Interface Sci. 2019, 552, 464–475. [Google Scholar] [CrossRef]
- Mandhane, J.M.; Gregory, G.A.; Aziz, K. A flow pattern map for gas-liquid flow in horizontal pipes. Int. J. Multiph. Flow 1974, 1, 537–553. [Google Scholar] [CrossRef]
- Chhabra, R.P.; Richardson, J.F. Prediction of flow pattern for the co-current flow of gas and non-newtonian liquid in horizontal pipes. Can. J. Chem. Eng. 1984, 62, 449–454. [Google Scholar] [CrossRef]
- Azarinezhad-Mohammadi, R. A Chemical Based Wet Cold Flow Approach for Addressing Hydrate Flow Assurance Problems. Ph.D. Thesis, Heriot-Watt University , Edinburgh, UK, 2010. [Google Scholar]
- Joshi, S.V.; Grasso, G.A.; Lafond, P.G.; Rao, I.; Webb, E.; Zerpa, L.E.; Sloan, E.D.; Koh, C.A.; Sum, A.K. Experimental flowloop investigations of gas hydrate formation in high water cut systems. Chem. Eng. Sci. 2013, 97, 198–209. [Google Scholar] [CrossRef]
- Khan, M.S.; Lal, B.; Bavoh, C.B.; Keong, L.K.; Bustam, A. Influence of ammonium based compounds for gas hydrate mitigation: A short review. Indian J. Sci. Technol. 2017, 10, 1–6. [Google Scholar] [CrossRef]
- Al-Safran, E. Investigation and prediction of slug frequency in gas/liquid horizontal pipe flow. J. Pet. Sci. Eng. 2009, 69, 143–155. [Google Scholar] [CrossRef]
- Sultan, R.A.; Alfarek, S.; Rahman, M.A.; Zendehboudi, S. CFD and experimental approach on three phase gas-liquid-solid Newtonian fluid flow in horizontal pipes. Int. J. Comput. Methods Exp. Meas. 2018, 7, 33–44. [Google Scholar] [CrossRef]
- Zadrazil, I.; Markides, C.N. An experimental characterization of liquid films in downwards co-current gas-liquid annular flow by particle image and tracking velocimetry. Int. J. Multiph. Flow 2014, 67, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Cerqueira, R.F.L.; Paladino, E.E.; Ynumaru, B.K.; Maliska, C.R. Image processing techniques for the measurement of two-phase bubbly pipe flows using particle image and tracking velocimetry (PIV/PTV). Chem. Eng. Sci. 2018, 189, 1–23. [Google Scholar] [CrossRef]
- Talley, J.D.; Worosz, T.; Kim, S.; Buchanan, J.R. Characterization of horizontal air–water two-phase flow in a round pipe part I: Flow visualization. Int. J. Multiph. Flow 2015, 76, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Majumder, S.K.; Ghosh, S.; Kundu, G.; Mitra, A.K. Frictional pressure drop of gas-Newtonian and gas-non Newtonian slug flow in vertical pipe. Int. J. Chem. React. Eng. 2011. [Google Scholar] [CrossRef]
- Ehinmowo, A.B.; Cao, Y.; Yeung, H.C. Slug flow in large diameter pipeline—Riser systems: Prediction and mitigation. Covenant J. Eng. Technol. 2018, 2, 1–21. [Google Scholar]
- Majumder, S.K.; Ghosh, S.; Mitra, A.K.; Kundu, G. Gas-Newtonian and gas-non-Newtonian slug flow in vertical pipe, part I: Gas holdup characteristics. Int. J. Chem. React. Eng. 2010. [Google Scholar] [CrossRef]
- Abed, E.M.; Ghoben, K. Gas-liquid slug frequency and slug unit length in horizontal pipes. Iraqi J. Mech. Mater. Eng. 2015, 15, 166–180. [Google Scholar]
- Zabaras, G.J.; Shell, E.; Co, P.T. Prediction of Slug Frequency for Gas/Liquid Flows; Society of Petroleum Engineers: Richardson, TX, USA, 1999. [Google Scholar]
- Sultan, R.A.; Rahman, M.A.; Rushd, S.; Zendehboudi, S.; Kelessidis, V.C. CFD analysis of pressure losses and deposition velocities in horizontal annuli. Int. J. Chem. Eng. 2019, 2019, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Daza Gómez, M.A.; Ratkovich, N.; Pereyra, E.; Poesio, P. CFD simulations of two-phase gas/non-Newtonian fluid flows in pipes. In Proceedings of the 3rd World Congress on Momentum, Heat and Mass Transfer (MHMT’18), Budapest, Hungary, 12–14 April 2018. [Google Scholar]
- Dziubinski, M.; Fidos, H.; Sosno, M. The flow pattern map of a two-phase non-Newtonian liquid-gas flow in the vertical pipe. Int. J. Multiph. Flow 2004, 30, 551–563. [Google Scholar] [CrossRef]
- Katzbauer, B. Properties and applications of xanthan gum. Polym. Degrad. Stab. 1998, 59, 81–84. [Google Scholar] [CrossRef]
- Bavoh, C.B.; Md Yuha, Y.B.; Tay, W.H.; Ofei, T.N.; Lal, B.; Mukhtar, H. Experimental and modelling of the impact of quaternary ammonium salts/ionic liquid on the rheological and hydrate inhibition properties of xanthan gum water-based muds for drilling gas hydrate-bearing rocks. J. Pet. Sci. Eng. 2019, 183, 106468. [Google Scholar] [CrossRef]
- Owusu, E.B.; Tsegab, H.; Sum, C.W.; Padmanabhan, E.; Qasim, A.; Khan, M.S.; Lal, B.; Ismail, M.C.; Rostani, K.; Shojaei, M.J.; et al. Synthesis, characterization, stability and thermal conductivity of multi-walled carbon nanotubes (MWCNTs) and eco-friendly jatropha seed oil based nanofluid: An experimental investigation and modeling approach. J. Mol. Liq. 2019, 293, 6–14. [Google Scholar]
- Tutu, N.K. Pressure fluctuations and flow pattern recognition in vertical two phase gas-liquid flows. Int. J. Multiph. Flow 1982, 8, 443–447. [Google Scholar] [CrossRef]
- Drahoš, J.; Čermák, J.; Selucky, K.; Ebner, L. Characterization of hydrodynamic regimes in horizontal two-phase flow: Part II: Analysis of wall pressure fluctuations. Chem. Eng. Process. Process Intensif. 1987, 22, 45–52. [Google Scholar] [CrossRef]
- Sun, Z.; Shao, S.; Gong, H. Gas-liquid flow pattern recognition based on wavelet packet energy entropy of vortex-induced pressure fluctuation. Meas. Sci. Rev. 2013, 13, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Blaney, S. Gamma Radiation Methods for Clamp-On Multiphase Flow Metering; Cranfield University: Bedford, UK, 2008. [Google Scholar]
- Park, S.H.; Kim, S.D. Characterization of pressure signals in a bubble column by wavelet packet transform. Korean J. Chem. Eng. 2003, 20, 128–132. [Google Scholar] [CrossRef]
- De Fang, L.; Liu, R.; Lu, Q.H.; Wang, X.J.; Liang, Y.J. The flow pattern transition identification and interphases force detection of gas-liquid two-phase flow. AASRI Procedia 2012, 3, 534–539. [Google Scholar] [CrossRef]
- Elperin, T.; Klochko, M. Flow regime identification in a two-phase flow using wavelet transform. Exp. Fluids 2002, 32, 674–682. [Google Scholar] [CrossRef]
- Kouba, G.E.; Jepson, W.P. The flow of slugs in horizontal, two-phase pipelines. J. Energy Resour. Technol. 1990, 112, 20–24. [Google Scholar] [CrossRef]
- Hubbard, M.G. An Analysis of Horizontal Gas-Liquid Slug Flow; University of Houston: Houston, TX, USA, 1965. [Google Scholar]
- Hubbard, M.G.; Dukler, A.E. The characterization of flow regimes for horizontal two-phase flow. Proc. Heat Transf. Fluid 1966, 1996, 100–121. [Google Scholar]
- Otten, L.; Fayed, A.S. Slug velocity and slug frequency measurements in concurrent air-non-Newtonian slug flow. Trans. Inst. Chem. Eng. 1977, 55, 64–67. [Google Scholar]
- Gregory, G.A.; Scott, D.S. Correlation of liquid slug velocity and frequency in horizontal concurrent gas-liquid slug flow. AIChE J. 1969, 15, 933–935. [Google Scholar] [CrossRef]
- Rosehart, R.G.; Rhodes, E.; Scott, D.S. Studies of gas liquid (non-Newtonian) slug flow: Void fraction meter, void fraction and slug characteristics. Chem. Eng. J. 1975, 10, 57–64. [Google Scholar] [CrossRef]
- Greskovich, E.J.; Shrier, A.L. Slug frequency in horizontal gas-liquid slug flow. Ind. Eng. Chem. Process Des. Dev. 1972, 11, 317–318. [Google Scholar] [CrossRef]
- Zabaras, G.J. Prediction of slug frequency for gas-liquid flows. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 3–6 October 1999. [Google Scholar]
- Heywood, N.I.; Richardson, J.F. Slug flow of air water mixtures in a horizontal pipe: Determination of liquid holdup by γ-ray absorption. Chem. Eng. Sci. 1979, 34, 17–30. [Google Scholar] [CrossRef]
- Shea, R.; Eidsmoen, H.; Nordsveen, M.; Rasmussen, J.; Xu, Z.; Nossen, J. Slug frequency prediction method comparison. In Proceedings of the 4th North American Conference on Multiphase Technology, Banff, AB, Canada, 3–4 June 2004; pp. 227–237. [Google Scholar]
- Picchi, D.; Manerba, Y.; Correra, S.; Margarone, M.; Poesio, P. Gas/shear-thinning liquid flows through pipes: Modeling and experiments. Int. J. Multiph. Flow 2015, 73, 217–226. [Google Scholar] [CrossRef]
- Misiti, M.; Misiti, Y.; Oppenheim, G.; Poggi, J.-M. Wavelet Toolbox; MathWorks Inc.: Natick, MA, USA, 1996; Volume 15, p. 21. [Google Scholar]
- Gao, R.X.; Yan, R. Wavelets: Theory and Applications for Manufacturing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Addison, P.S. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Walker, J.S. A Primer on Wavelets and Their Scientific Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Coifman, R.R.; Wickerhauser, M.V. Entropy-based algorithms for best basis selection. IEEE Trans. Inf. Theory 1992, 38, 713–718. [Google Scholar] [CrossRef] [Green Version]
- Uyar, M.; Yildirim, S.; Gencoglu, M.T. An effective wavelet-based feature extraction method for classification of power quality disturbance signals. Electr. Power Syst. Res. 2008, 78, 1747–1755. [Google Scholar] [CrossRef]
- Fan, C.; Ding, Y.; Ren, X. Wavelet entropy applied in gas-liquid two-phase flow. In Proceedings of the 32nd Chinese Control Conference (CCC), Xi’an, China, 26–28 July 2013; pp. 8623–8627. [Google Scholar]
- Yu, Y.; Junsheng, C. A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 2006, 294, 269–277. [Google Scholar] [CrossRef]
- Chhabra, R.P.; Richardson, J.F. Non-Newtonian Flow: Fundamentals and Engineering Applications; Butterworth-Heinemann: Oxford, UK, 1999. [Google Scholar]
- Shaikh, A.; Al-Dahhan, M.H. A review on flow regime transition in bubble columns. Int. J. Chem. React. Eng. 2007. [Google Scholar] [CrossRef]
Newtonian Fluid | Water |
---|---|
Non-Newtonian Fluid | 0.1% xanthan gum solution (Power Law Index, n = 0.81) and (Power Law Index, m or k = 0.009344) |
Liquid velocity range | 1.5 to 2.5 m/s |
Air velocity | 2.9 to 6.4 m/s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morshed, M.; Khan, M.S.; Rahman, M.A.; Imtiaz, S. Flow Regime, Slug Frequency and Wavelet Analysis of Air/Newtonian and Air/non-Newtonian Two-Phase Flow. Appl. Sci. 2020, 10, 3272. https://doi.org/10.3390/app10093272
Morshed M, Khan MS, Rahman MA, Imtiaz S. Flow Regime, Slug Frequency and Wavelet Analysis of Air/Newtonian and Air/non-Newtonian Two-Phase Flow. Applied Sciences. 2020; 10(9):3272. https://doi.org/10.3390/app10093272
Chicago/Turabian StyleMorshed, Munzarin, Muhammad Saad Khan, Mohammad Azizur Rahman, and Syed Imtiaz. 2020. "Flow Regime, Slug Frequency and Wavelet Analysis of Air/Newtonian and Air/non-Newtonian Two-Phase Flow" Applied Sciences 10, no. 9: 3272. https://doi.org/10.3390/app10093272
APA StyleMorshed, M., Khan, M. S., Rahman, M. A., & Imtiaz, S. (2020). Flow Regime, Slug Frequency and Wavelet Analysis of Air/Newtonian and Air/non-Newtonian Two-Phase Flow. Applied Sciences, 10(9), 3272. https://doi.org/10.3390/app10093272