Community Composition and Ex Situ Cultivation of Fungi Associated with UNESCO Heritage Monuments in the Bay of Naples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Confocal Laser Scanning Microscope Analysis
2.3. Isolation of Fungal Strains
2.4. Identification of Fungal Isolates
2.5. Fungal Preservation for Ex Situ Conservation
3. Results
3.1. Description of Damage and Substrate Change
3.2. Confocal Laser Microscopy
3.3. Molecular Identifications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salvadori, O.; Municchia, A.C. The Role of Fungi and Lichens in the Biodeterioration of Stone Monuments. Open Conf. Proc. J. 2016, 7, 39–54. [Google Scholar] [CrossRef]
- Burford, E.P.; Fomina, M.; Gadd, G.M. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Miner. Mag. 2003, 67, 1127–1155. [Google Scholar] [CrossRef]
- Sterflinger, K. Fungi as Geologic Agents. Geomicrobiol. J. 2000, 17, 97–124. [Google Scholar] [CrossRef]
- Wright, J.S. Geomorphology and stone conservation: Sandstone decay in Stoke-on-Trent. Struct. Surv. 2002, 20, 50–61. [Google Scholar] [CrossRef]
- Turick, C.E.; Berry, C.J. Review of concrete biodeterioration in relation to nuclear waste. J. Environ. Radioact. 2016, 151, 12–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caneva, G.; Nugari, M.P.; Nugari, M.P.; Salvadori, O. Plant Biology for Cultural Heritage: Biodeterioration and Conservation; Getty Publications: Los Angeles, CA, USA, 2008. [Google Scholar]
- Gaylarde, C.; Silva, M.R.; Warscheid, T. Microbial impact on building materials: An overview. Mater. Struct. 2003, 36, 342–352. [Google Scholar] [CrossRef]
- Pinna, D. Biofilms and lichens on stone monuments: Do they damage or protect? Front. Microbiol. 2014, 5, 133. [Google Scholar] [CrossRef]
- Urzì, C.; De Leo, F. Sampling with adhesive tape strips: An easy and rapid method to monitor microbial colonization on monument surfaces. J. Microbiol. Methods 2001, 44, 1–11. [Google Scholar] [CrossRef]
- Larson, C.; Passy, S.I. Spectral fingerprinting of algal communities: A novel approach to biofilm analysis and biomonitoring. J. Phycol. 2005, 41, 439–446. [Google Scholar] [CrossRef]
- Samson, R.A.; Hoekstra, E.S.; Frisvad, J.C.; Filtenborg, O. Introduction to Food-Borne Fungi; Centraalbureau voor Schimmelcultures: Delft, The Netherlands, 1996. [Google Scholar]
- Nichols, H.W.; Bold, H.C. Trichosarcina polymorpha Gen. et Sp. Nov. J. Phycol. 1965, 1, 34–38. [Google Scholar] [CrossRef]
- Jeger, M.J.; Lamour, A.; Gilligan, C.A.; Otten, W. A fungal growth model fitted to carbon-limited dynamics of Rhizoctonia solani. New Phytol. 2008, 178, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Skaar, I.; Stenwig, H. Malt-yeast extract-sucrose agar, a suitable medium for enumeration and isolation of fungi from silage. Appl. Environ. Microbiol. 1996, 62, 3614–3619. [Google Scholar] [CrossRef] [Green Version]
- Passarini, M.R.Z.; Santos, C.; Lima, N.; Berlinck, R.G.S.; Sette, L.D. Filamentous fungi from the Atlantic marine sponge Dragmacidon reticulatum. Arch. Microbiol. 2012, 195, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi, Mycol, 3rd ed.; Burgess Publishing Company: Minneapolis, MN, USA, 1972. [Google Scholar]
- Bushell, M.E. (Ed.) Fassatiovà O Moulds and filamentous fungi in technical microbiology. In Progress in Industrial Microbiology 22; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Doyle, J. DNA Protocols for Plants. In Molecular Techniques in Taxonomy; Springer: Berlin/Heidelberg, Germany, 1991; pp. 283–293. [Google Scholar] [CrossRef]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walther, G.; Pawłowska, J.; Alastruey-Izquierdo, A.; Wrzosek, M.; Rodriguez-Tudela, J.; Dolatabadi, S.; Chakrabarti, A.; De Hoog, G. DNA barcoding in Mucorales: An inventory of biodiversity. Pers. Mol. Phylogeny Evol. Fungi 2013, 30, 11–47. [Google Scholar] [CrossRef] [Green Version]
- Del Mondo, A.; Pinto, G.; De Natale, A.; Pollio, A. In vitro colonization experiments for the assessment of mycelial growth on a tuff substratum by a fusarium solani strain isolated from the Oplonti (Naples, italy) archaeological site. Int. J. Cons. Sci. 2017, 8, 651–662. [Google Scholar]
- Smith, D.; Ryan, M.J.; Day, J.G. The UKNCC Biological Resource: Properties, Maintenance and Management; UKNCC Secretariat: Egham, UK, 2001; 382p. [Google Scholar]
- OECD. Biological Resource Centres: Underpinning the Future of Life Sciences and Biotechnology; OECD Publications: Paris, France, 2001; p. 66. [Google Scholar]
- D’Elia, L.; Del Mondo, A.; Santoro, M.; De Natale, A.; Pinto, G.; Pollio, A. Microorganisms from harsh and extreme environments: A collection of living strains at ACUF (Naples, Italy). Ecol. Quest. 2018, 29, 1–16. [Google Scholar] [CrossRef]
- Gorbushina, A.A. Life on the rocks. Environ. Microbiol. 2007, 9, 1613–1631. [Google Scholar] [CrossRef]
- Warscheid, T.; Braams, J. Biodeterioration of stone: A review. Int. Biodeterior. Biodegrad. 2000, 46, 343–368. [Google Scholar] [CrossRef]
- Isola, D.; Zucconi, L.; Onofri, S.; Caneva, G.; De Hoog, G.S.; Selbmann, L. Extremotolerant rock inhabiting black fungi from Italian monumental sites. Fungal Divers. 2016, 76, 75–96. [Google Scholar] [CrossRef]
- Seifert, K.A.; Samson, R.A.; Dewaard, J.R.; Houbraken, J.; Lévesque, C.A.; Moncalvo, J.-M.; Louis-Seize, G.; Hebert, P.D.N. Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc. Natl. Acad. Sci. USA 2007, 104, 3901–3906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Mondo, A.; De Natale, A.; Pinto, G.; Pollio, A. Correction to: Novel qPCR probe systems for the characterization of subaerial biofilms on stone monuments. Ann. Microbiol. 2019, 69, 1097–1106. [Google Scholar] [CrossRef]
- Kirk, P.M.; Cannon, P.F.; David, J.C.; Stalpers, J.A. Dictionary of the Fungi, 9th ed.; CABI Publishing: Wallingford, UK, 2001; p. 55. [Google Scholar]
- Saarela, M.; Alakomi, H.-L.; Suihko, M.-L.; Maunuksela, L.; Raaska, L.; Mattila-Sandholm, T. Heterotrophic microorganisms in air and biofilm samples from Roman catacombs, with special emphasis on actinobacteria and fungi. Int. Biodeterior. Biodegrad. 2004, 54, 27–37. [Google Scholar] [CrossRef]
- Sterflinger, K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol. Rev. 2010, 24, 47–55. [Google Scholar] [CrossRef]
- Gadd, G.M. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 2007, 111, 3–49. [Google Scholar] [CrossRef] [PubMed]
- Arpini, C.M.; Nóbrega, Y.C.; Castheloge, V.D.; Neves, D.S.; Tadokoro, C.E.; Da Costa, G.L.; Oliveira, M.M.E.; Santos, M.R.D.D. Purpuriocillium lilacinum infection in captive loggerhead sea turtle hatchlings. Med Mycol. Case Rep. 2019, 23, 8–11. [Google Scholar] [CrossRef]
Location | Light (μmol m−2 s−1) | pH | Relative Humidity | Temperature (°C) |
---|---|---|---|---|
Cuma, Sibyl Caves | 0.8± 0.01 | 7/8 | 50 ± 1.2% | 19.2 ± 0.3 |
Ercolano, Suburban Baths | 30 ± 0.6 | 7/8 | 94 ± 1.7% | 15.3 ± 0.9 |
Nola Roman Amphitheater | 130.84 | 7/8 | 90 ± 1.2% | 16.7 ± 1.2 |
House of Poppea, Oplonti | 129.95 | 7/8 | 95 ± 0.9% | 13.2 ± 0.9 |
House of Fauno, Pompei | 46 ± 0.6 | 7/8 | 58.8 ± 0.9% | 18.2 ± 0.9 |
House of Castricio, Pompei | 8.97 | 7/8 | 90 ± 1.2% | 18.3 ± 0.9 |
Identified Species Complex Level | Sites | Source | ACUF Collection Code | Gene Bank Accession Number |
---|---|---|---|---|
Alternaria section Alternata | Pompei | Mortar | 033f | MW881067 |
Pompei | Mortar | 032f | MW881066 | |
Alternaria section Alternata | Nola | Marble | 053f | MW881087 |
Alternaria section Alternata | Ercolano | Plaster | 017f | MW881054 |
Alternaria sp. | Ercolano | Mortar | 020f | MW881053 |
Aspergillus section Aeni | Pompei | Mortar | 039f | MW881073 |
Aspergillus section Usti | Ercolano | Mortar | 029f | MW881060 |
Aspergillus section Usti | Cuma | Tuff | 012f | MW881047 |
Cuma | Tuff | 022f | MW881049 | |
Aspergillus section Nigri | Ercolano | Plaster | 007f | MW881065 |
Ercolano | Plaster | 019f | MW881062 | |
Aspergillus section Circumdati | Pompei | Frescos | 015f | MW881099 |
Pompei | Frescos | 026f | MW881100 | |
Aspergillus sp. | Cuma | Tuff | 008f | MW881051 |
Cladosporium sp. | Pompei | Mortar | 041f | MW881075 |
Clonostachys sp. | Oplonti | Mortar | 005f | MW881093 |
Oplonti | Mortar | 056f | MW881095 | |
Oplonti | Mortar | 010f | MW881098 | |
Oplonti | Mortar | 021f | MW881097 | |
Clonostachys sp. | Nola | Marble | 042f | MW881076 |
Nola | Marble | 043f | MW881077 | |
Nola | Marble | 044f | MW881078 | |
Curvularia geniculata species complex | Ercolano | Plaster | 023f | MW881052 |
Fusarium oxysporum species complex | Ercolano | Plaster | 031f | MW881064 |
Fusarium section Discolor | Cuma | Tuff | 009f | MW881048 |
Fusarium oxysporum species complex | Pompei | Frescos | 014f | MW881102 |
Fusarium oxysporum species complex | Ercolano | Plaster | 018f | MW881055 |
Ercolano | Plaster | 024f | MW881056 | |
Ercolano | Plaster | 025f | MW881057 | |
Ercolano | Plaster | 028f | MW881059 | |
Fusarium oxysporum species complex | Oplonti | Mortar | 054f | MW881090 |
Oplonti | Mortar | 055f | MW881091 | |
Oplonti | Mortar | 001f | MW881089 | |
Fusarium solani species complex | Ercolano | Plaster | 016f | MW881063 |
Fusarium sp. | Oplonti | Mortar | 006f | MW881088 |
Fusarium tricinctum species complex | Oplonti | Mortar | 002f | MW881094 |
Lecanicillium sp. | Pompei | Frescos | 013f | MW881101 |
Lecanicillium sp. | Ercolano | Mortar | 027f | MW881058 |
Lecanicillium sp. | Ercolano | Plaster | 030f | MW881061 |
Neofusicoccum parvum species complex | Cuma | Tuff | 011f | MW881050 |
Penicillium section Fasciculata | Pompei | Mortar | 036f | MW881070 |
Pompei | Mortar | 038f | MW881072 | |
Pompei | Mortar | 035f | MW881069 | |
Pompei | Mortar | 040f | MW881074 | |
Penicillium sp. | Pompei | Mortar | 034f | MW881068 |
Pompei | Mortar | 037f | MW881071 | |
Penicillium section Aspergilloides | Nola | Marble | 046f | MW881080 |
Nola | Marble | 047f | MW881081 | |
Nola | Marble | 048f | MW881082 | |
Nola | Marble | 049f | MW881083 | |
Nola | Marble | 051f | MW881085 | |
Purpureocillium sp. | Oplonti | Frescos | 004f | MW881096 |
Talaromyces section Talaromyces | Oplonti | Mortar | 003f | MW881092 |
Talaromyces section Talaromyces | Nola | Marble | 045f | MW881079 |
Trichoderma sp. | Nola | Marble | 050f | MW881084 |
Nola | Marble | 052f | MW881086 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petraretti, M.; Duffy, K.J.; Del Mondo, A.; Pollio, A.; De Natale, A. Community Composition and Ex Situ Cultivation of Fungi Associated with UNESCO Heritage Monuments in the Bay of Naples. Appl. Sci. 2021, 11, 4327. https://doi.org/10.3390/app11104327
Petraretti M, Duffy KJ, Del Mondo A, Pollio A, De Natale A. Community Composition and Ex Situ Cultivation of Fungi Associated with UNESCO Heritage Monuments in the Bay of Naples. Applied Sciences. 2021; 11(10):4327. https://doi.org/10.3390/app11104327
Chicago/Turabian StylePetraretti, Mariagioia, Karl J. Duffy, Angelo Del Mondo, Antonino Pollio, and Antonino De Natale. 2021. "Community Composition and Ex Situ Cultivation of Fungi Associated with UNESCO Heritage Monuments in the Bay of Naples" Applied Sciences 11, no. 10: 4327. https://doi.org/10.3390/app11104327
APA StylePetraretti, M., Duffy, K. J., Del Mondo, A., Pollio, A., & De Natale, A. (2021). Community Composition and Ex Situ Cultivation of Fungi Associated with UNESCO Heritage Monuments in the Bay of Naples. Applied Sciences, 11(10), 4327. https://doi.org/10.3390/app11104327