Mechanical Performance of Gilsonite Modified Asphalt Mixture Containing Recycled Concrete Aggregate
Abstract
:1. Introduction
1.1. Gilsonite Background
1.2. Recycled Concrete Aggregate Background
1.3. Problem Statement and Objective
2. Materials and Methods
2.1. Materials
2.2. Modification of AC 60–70
2.3. Mix Design Procedure
- ○
- The MDC-19 and MDC-25 mixes were the control. These used AC 60–70 as a binder and 100% of their aggregates were NA. The gradation of these mixes is presented in Figure 2.
- ○
- The MDC-19-M and MDC-19-V mixes had the gradation of the MDC-19 mix; however, they used AC/G/10% as a binder and replaced 21% (particles retained in sieve 3/8″ or 9.5 mm) of the NA with RCA. M or V indicate that the replacement was carried out by mass or volume, respectively.
- ○
- The MDC-25-M and MDC-25-V mixes had the gradation of the MDC-25 mix; however, they used AC/G/10% as a binder and replaced 24% (particles retained in sieve ½″ or 12.5 mm) of the NA aggregate with RCA.
2.4. Resilient Modulus, Permanent Deformation, and Fatigue Resistance
2.5. Indirect Tensile Strength (ITS) and Cantabro Tests
3. Results and Discussion
3.1. Marshall Test
3.2. Resilient Modulus (RM) and Permanent Deformation Tests
3.3. Fatigue Test
3.4. Indirect Tensile Strength and Cantabro Tests
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, S.; Liang, M.; Fan, W.; Zhang, Y.; Qian, C.; He, Y.; Shi, J. Investigating the effects of SBR on the properties of gilsonite modified Asphalt. Constr. Build. Mater. 2018, 190, 1103–1116. [Google Scholar] [CrossRef]
- Sobhi, S.; Yousefi, A.; Behnood, A. The effects of gilsonite and Sasobit on the mechanical properties and durability of asphalt mixtures. Constr. Build. Mater. 2020, 238, 117676. [Google Scholar] [CrossRef]
- Liu, J.; Li, P. Experimental study on gilsonite-modified asphalt. In Proceedings of the Airfield and Highway Pavements 2008, Bellevue, WA, USA, 15–18 October 2008. [Google Scholar]
- Nciri, N.; Song, S.; Kim, N.; Cho, N. Chemical characterization of gilsonite bitumen. J. Pet. Environ. Biotechnol. 2014, 5, 1–10. [Google Scholar]
- Babagoli, R.; Hasaninia, M.; Namazi, N.M. Laboratory evaluation of the effect of gilsonite on the performance of stone matrix asphalt mixtures. Road Mater. Pavement Des. 2015, 16, 889–906. [Google Scholar] [CrossRef]
- Davis, N., II; Tooman, C.E. New laboratory tests evaluate the effectiveness of gilsonite resin as a borehole stabilizer. SPE Drilling Eng. 1989, 4, 47–56. [Google Scholar] [CrossRef]
- Pakdaman, E.; Osfouri, S.; Azin, R.; Niknam, K.; Roohi, A. Synthesis and characterization of hydrophilic gilsonite fine particles for improving water-based drilling mud properties. J. Dispers. Sci. Technol. 2020, 41, 1633–1642. [Google Scholar] [CrossRef]
- Wong, C.; Michael, K. The Effect of Gilsonite-Modified Asphalt on Hot Mix Asphaltic Concrete Mixes Used in District 12, Houston, Texas. Report No. DHT-22; Departmental Information Exchange, State Department of Highways and Public Transportation: Austin, TX, USA, 1990; p. 16. [Google Scholar]
- Ameri, M.; Mansourian, A.; Sheikhmotevali, A.H. Investigating effects of ethylene vinyl acetate and gilsonite modifiers upon performance of base bitumen using Superpave tests methodology. Constr. Build. Mater. 2012, 36, 1001–1107. [Google Scholar] [CrossRef]
- Li, K.; Vasiliu, M.; McAlpin, C.R.; Yang, Y.; Dixon, D.A.; Voorhees, K.J.; Batzle, M.; Liberatore, M.W.; Herring, A.M. Further insights into the structure and chemistry of the Gilsonite asphaltene from a combined theoretical and experimental approach. Fuel 2015, 157, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Vélez Herrera, J.S.; Restrepo, S.V.; Giraldo Vasquez, D. Mechanical and rheometric properties of gilsonite/carbon black/natural rubber compounds cured using conventional and efficient vulcanization systems. Polym. Test. 2016, 56, 1–9. [Google Scholar] [CrossRef]
- Fang, Z.; Guang-you, Z.; Zhi-qiang, C.; Qiu-li, Z.; Quan, S. Molecular composition of vanadyl porphyrins in the gilsonite. J. Fuel Chem. Technol. 2020, 48, 562–567. [Google Scholar]
- Sun, D. A Study on Xinjiang asphaltite as an asphalt modifier. Part II: Rheological evaluation of modified asphalt binders. Petrol. Sci. Tech. 2014, 32, 2059–2067. [Google Scholar] [CrossRef]
- Sun, D. A Study on Xinjiang Asphaltite as an Asphalt Modifier. Part I: Composition, structure, and thermal behavior. Petrol. Sci. Tech. 2012, 30, 307–315. [Google Scholar] [CrossRef]
- Esfeh, H.K.; Ghanavati, B.; GhaleGolabi, T. Properties of modified bitumen obtained from natural bitumen by adding pyrolysis fuel oil. Int. J. Chem. Eng. Appl. 2011, 2, 168–172. [Google Scholar] [CrossRef]
- Widyatmoko, I.; Elliott, R. Characteristics of elastomeric and plastomeric binders in contact with natural asphalts. Constr. Build. Mater. 2008, 22, 239–249. [Google Scholar] [CrossRef]
- Anderson, D.; Maurer, D.; Ramirez, T.; Christensen, D.; Marasteanu, M.; Mehta, Y. Field performance of modified asphalt binders evaluated with Superpave test methods: I-80 test project. Transport. Res. Rec. 1999, 1661, 60–68. [Google Scholar] [CrossRef]
- Aflaki, S.; Tabatabaee, N. Proposals for modification of Iranian bitumen to meet the climatic requirements of Iran. Constr. Build. Mater. 2009, 23, 2141–2150. [Google Scholar] [CrossRef]
- Cholewińska, M.; Iwański, M. Modification of petroleum road bitumen 50/70 with natural asphalt Gilsonite. Struct. Environ. 2011, 3, 5–10. [Google Scholar]
- Kök, B.V.; Yilmaz, M.; Guler, M. Evaluation of high temperature performance of SBS + Gilsonite modified binder. Fuel 2011, 90, 3093–3099. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Jiang, J.; Liu, W. Properties of Natural Bitumen Gilsonite Modified Bitumen. In Proceedings of the Fifth International Conference on Transportation Engineering, ASCE, Dailan, China, 26–27 September 2015. [Google Scholar]
- Rondón-Quintana, H.A.; Noguera, J.A.; Urazán, C.F. Behavior of gilsonite-modified hot mix asphalt by wet and dry processes. J. Mater. Civ. Eng. 2016, 28, 04015114. [Google Scholar] [CrossRef]
- Li, R.; Karki, P.; Hao, P.; Bhasin, A. Rheological and low temperature properties of asphalt composites containing rock asphalts. Constr. Build. Mater. 2015, 96, 47–54. [Google Scholar] [CrossRef]
- Jahanian, H.R.; Shafabakhsh, G.; Divandari, H. Performance evaluation of hotmix asphalt (HMA) containing bitumen modified with gilsonite. Constr. Build. Mater. 2017, 131, 156–164. [Google Scholar] [CrossRef]
- Tang, N.; Huang, W.; Zheng, M.; Hu, J. Investigation of Gilsonite-, polyphosphoric acid- and styrene–butadiene–styrene-modified asphalt binder using the multiple stress creep and recovery test. Road Mater. Pavement Des. 2017, 18, 1084–1097. [Google Scholar] [CrossRef]
- Ameri, M.; Mirzaiyan, D.; Amini, A. Rutting Resistance and fatigue behavior of gilsonite-modified asphalt binders. J. Mater. Civ. Eng. 2018, 30, 04018292. [Google Scholar] [CrossRef]
- Mirzaiyan, D.; Ameri, M.; Amini, A.; Sabouri, M.; Norouzi, A. Evaluation of the performance and temperature susceptibility of gilsonite and SBS-modified asphalt binders. Constr. Build. Mater. 2019, 207, 679–692. [Google Scholar] [CrossRef]
- Rondón-Quintana, H.A.; Zafra, C.; Chavez, S. Performance characteristics and mechanical resistance of a hot mix asphalt using gilsonite and blast furnace slag. Sci. Rev. Eng. Environ. Sci. 2019, 28, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Gopinath, P.; Kumar, C.N. Performance evaluation of HMAC mixes produced with gilsonite modified bitumen for heavily trafficked roads. Mater. Today Proc. 2021, 43, 941–946. [Google Scholar] [CrossRef]
- Nasrekani, A.A.; Naderi, K.; Nakhaei, M.; Mahmoodinia, N. High-temperature performance of gilsonite-modified asphalt binder and asphalt concrete. Petrol. Sci. Technol. 2016, 34, 1783–1789. [Google Scholar] [CrossRef]
- Ameli, A.; Pakshir, A.H.; Babagoli, R.; Habibpour, A.; Norouzi, N.; Davoudinezhad, S. The effects of gilsonite and crumb rubber on moisture damage resistance of stone matrix asphalt mixtures. Constr. Build. Mater. 2021, 274, 122052. [Google Scholar] [CrossRef]
- Ameri, M.; Mansourian, A.; Ashani, S.S.; Yadollahi, G. Technical study on the Iranian Gilsonite as an additive for modification of asphalt binders used in pavement construction. Constr. Build. Mater. 2011, 25, 1379–1387. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Wu, Y.; Sun, W.; Wang, Y. Investigation on thermo-rheological properties and stability of SBR modified asphalts containing palygorskite clay. J. Appl. Polym. Sci. 2009, 113, 2524–2535. [Google Scholar] [CrossRef]
- Zhong, K.; Yang, X.; Luo, S. Performance evaluation of petroleum bitumen binders and mixtures modified by natural rock asphalt from Xinjiang China. Constr. Build. Mater. 2017, 154, 623–631. [Google Scholar] [CrossRef]
- Shi, X.; Cai, L.; Xu, W.; Fan, J.; Wang, X. Effect of nano-silica and rock asphalt on rheological properties of modified bitumen. Constr. Build. Mater. 2018, 161, 705–714. [Google Scholar] [CrossRef]
- Yilmaz, M.; Yamaç, Ö.E. Evaluation of Gilsonite and Styrene-Butadiene-Styrene composite usage in bitumen modification on the mechanical properties of hot mix asphalts. J. Mater. Civ. Eng. 2017, 29, 04017089. [Google Scholar] [CrossRef]
- Ameli, A.; Babagoli, R.; Asadi, S.; Norouzi, N. Investigation of the performance properties of asphalt binders and mixtures modified by Crumb Rubber and Gilsonite. Constr. Build. Mater. 2021, 279, 122424. [Google Scholar] [CrossRef]
- Ke, Z.; Dong-wei, C.; Qing-quan, L. Research on the rheologic characteristics of gilsonite modified bitumen. J. Highw. Transp. Res. Dev. 2008, 3, 20–24. [Google Scholar]
- Abergel, T.; Dean, B.; Dulac, J. Towards a Zero-Emission, Efficient, and Resilient Buildings 375 and Construction Sector: Global Status Report 2017; United Nations Environment and International 376 Energy Agency: Paris, France, 2017; p. 43. [Google Scholar]
- Ghaffar, S.H.; Burman, M.; Braimah, N. Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery. J. Clean. Prod. 2020, 244, 118710. [Google Scholar] [CrossRef]
- Hasan, U.; Whyte, A.; Al Jassmi, H. Life cycle assessment of roadworks in United Arab Emirates: Recycled construction waste, reclaimed asphalt pavement, warm-mix asphalt and blast furnace slag use against traditional approach. J. Clean. Prod. 2020, 257, 120531. [Google Scholar] [CrossRef]
- Jin, R.; Chen, Q. Overview of concrete recycling legislation and practice in the United States. J. Constr. Eng. Mgmt. 2019, 145, 05019004. [Google Scholar] [CrossRef]
- Giri, J.P.; Panda, M.; Sahoo, U.C. Performance of bituminous mixes containing emulsion-treated recycled concrete aggregates. J. Mater. Civ. Eng. 2018, 30, 04018052. [Google Scholar] [CrossRef]
- Cho, Y.H.; Yun, T.; Kim, I.T.; Choi, N.R. The application of recycled concrete aggregate (RCA) for hot mix asphalt (HMA) base layer aggregate. KSCE J. Civ. Eng. 2011, 15, 473–478. [Google Scholar] [CrossRef]
- Motter, J.S.; Miranda, L.F.; Bernucci, L.L. Performance of hot mix asphalt concrete produced with coarse recycled concrete aggregate. J. Mater. Civ. Eng. 2015, 27, 04015030. [Google Scholar] [CrossRef]
- Kareem, A.I.; Nikraz, H.; Asadi, H. Application of double-coated recycled concrete aggregates for hot-mix asphalt. J. Mater. Civ. Eng. 2019, 31, 04019036. [Google Scholar] [CrossRef]
- Monu, K.; Ransinchung, G.; Pandey, G.S.; Singh, S. Performance evaluation of recycled-concrete aggregates and reclaimed-asphalt pavements for foam-mix asphalt mixes. J. Mater. Civ. Eng. 2020, 32, 04020295. [Google Scholar] [CrossRef]
- Sanchez-Cotte, E.H.; Fuentes, L.; Martinez-Arguelles, G.; Rondón-Quintana, H.A.; Walubita, L.F.; Cantero-Durango, J.M. Influence of recycled concrete aggregates from different sources in hot mix asphalt design. Constr. Build. Mater. 2020, 259, 120427. [Google Scholar] [CrossRef]
- Alnedawi, A.; Rahman, M.A. Recycled concrete aggregate as alternative pavement materials: Experimental and parametric study. J. Transp. Eng. B Pavements 2021, 147, 04020076. [Google Scholar] [CrossRef]
- Pasandín, A.R.; Pérez, I. Laboratory evaluation of hot-mix asphalt containing construction and demolition waste. Constr. Build. Mater. 2013, 43, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Fatemi, S.; Imaninasab, R. Performance evaluation of recycled asphalt mixtures by construction and demolition waste materials. Constr. Build. Mater. 2016, 120, 450–456. [Google Scholar] [CrossRef]
- Muniz de Farias, M.; Quiñonez, F.; Rondón, H.A. Behavior of a hot-mix asphalt made with recycled concrete aggregate and crumb rubber. Can. J. Civ. Eng. 2019, 46, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Zou, G.; Sun, X.; Liu, X.; Zhang, J. Influence factors on using recycled concrete aggregate in foamed asphalt mixtures based on tensile strength and moisture resistance. Constr. Build. Mater. 2020, 265, 120363. [Google Scholar] [CrossRef]
- Natarajan, B.M.; Kanavas, Z.; Sanger, M.; Rudolph, J.; Chen, J.; Edil, T.; Ginder-Vogel, M. Characterization of recycled concrete aggregate after eight years of field deployment. J. Mater. Civ. Eng. 2019, 31, 04019070. [Google Scholar] [CrossRef]
- Tahmoorian, F.; Yeaman, J.; Mirzababaei, M. Comparisons of the resilient moduli of asphalt mixes containing recycled materials through empirical and experimental methods. J. Mater. Civ. Eng. 2020, 32, 04020255. [Google Scholar] [CrossRef]
- Tan, X.; Li, W.; Zhao, M.; Tam, V.W.Y. Numerical Discrete-Element Method investigation on failure process of recycled aggregate concrete. J. Mater. Civ. Eng. 2019, 31, 04018353. [Google Scholar] [CrossRef]
- Tahmoorian, F.; Samali, B. Laboratory investigations on the utilization of RCA in asphalt mixtures. Int. J. Pavement Res. Technol. 2018, 11, 627–638. [Google Scholar] [CrossRef]
- Nwakaire, C.M.; Yap, S.P.; Onn, C.C.; Yuen, C.W.; Ibrahim, H.A. Utilisation of recycled concrete aggregates for sustainable highway pavement applications; a review. Constr. Build. Mater. 2020, 235, 117444. [Google Scholar] [CrossRef]
- Mikhailenko, P.; Kakar, M.R.; Piao, Z.; Bueno, M.; Poulikakos, L. Incorporation of recycled concrete aggregate (RCA) fractions in semidense asphalt (SDA) pavements: Volumetrics, durability and mechanical properties. Constr. Build. Mater. 2020, 264, 120166. [Google Scholar] [CrossRef]
- Pérez, I.; Toledano, M.; Galego, J.; Taibo, J. Mechanical properties of hot mix asphalt made with recycled aggregates from reclaimed construction and demolition debris. Mater. Construcción 2007, 57, 17–29. [Google Scholar]
- Pérez, I.; Gallego, J.; Toledano, M.; Taibo, J. Asphalt mixtures with construction and demolition debris. Proc. Inst. Civil. Eng. Transp. 2010, 163, 165–174. [Google Scholar] [CrossRef]
- Pérez, I.; Pasandin, A.R.; Medina, L. Hot mix asphalt using C&D waste as coarse aggregates. Mater. Des. 2012, 36, 840–846. [Google Scholar]
- Mills-Beale, J.; You, Z. The mechanical properties of asphalt mixtures with recycled concrete aggregates. Constr. Build. Mater. 2010, 24, 340–345. [Google Scholar] [CrossRef]
- Qasrawi, H.; Asi, I. Effect of bitumen grade on hot asphalt mixes properties prepared using recycled coarse concrete aggregate. Constr. Build. Mater. 2016, 121, 18–24. [Google Scholar] [CrossRef]
- Galan, J.J.; Silva, L.M.; Pérez, I.; Pasandín, A.R. Mechanical behavior of hot-mix asphalt made with recycled concrete aggregates from construction and demolition waste: A design of experiments approach. Sustainability 2019, 11, 3730. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-H.; Du, J.-C.; Shen, D.-H. Evaluation of pre-coated recycled concrete aggregate for hot mix asphalt. Constr. Build. Mater. 2012, 28, 66–71. [Google Scholar] [CrossRef]
- Pasandín, A.R.; Pérez, I. Mechanical properties of hot-mix asphalt made with recycled concrete aggregates coated with bitumen emulsion. Constr. Build. Mater. 2014, 55, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.G.; Kou, S.C.; Poon, C.S.; Dai, J.G.; Li, Q.Y. Influence of silane-based water repellent on the durability properties of recycled aggregate concrete. Cem. Concr. Compos. 2013, 35, 32–38. [Google Scholar] [CrossRef]
- Singh, M.; Roy, A.B.; Waseem, S.; Singh, H. Feasibility and performance analysis of carbonated recycled aggregate concrete. Int. J. Sustain. Eng. 2020. [Google Scholar] [CrossRef]
- Bastidas, J.G.; Rondón-Quintana, H.A.; Zafra, C. Study of hot mix asphalt containing recycled concrete aggregates that were mechanically treated with a Los Angeles machine. Int. J. Civ. Eng. Technol. 2019, 10, 226–243. [Google Scholar]
- Upshaw, M.; Cai, C.S. Critical review of recycled aggregate concrete properties, improvements, and numerical models. J. Mater. Civ. Eng. 2020, 32, 03120005. [Google Scholar] [CrossRef]
- Raman, J.; Ramasamy, V. Various treatment techniques involved to enhance the recycled coarse aggregate in concrete: A review. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- IDEAM–UNAL (Instituto de Hidrología, Meteorología y Estudios Ambientales–Universidad Nacional de Colombia). Variabilidad Climática y Cambio Climático en Colombia; IDEAM–UNAL: Bogotá, Colombia, 2018. [Google Scholar]
- INVIAS–Instituto Nacional de Vías. Especificaciones Generales de Construcción de Carreteras; INVIAS–Instituto Nacional de Vías: Bogotá, Colombia, 2020. [Google Scholar]
- Ríos-Ocampo, J.P.; Olaya-Morales, Y.; Rivera-León, G.J. Proyección de la demanda de materiales de construcción en Colombia por medio de análisis de flujos de materiales y dinámica de sistemas. Rev. Ing. 2017, 16, 75–95. [Google Scholar] [CrossRef]
- Rondón, H.A.; Reyes, F.A. Pavimentos: Materiales, Construcción y Diseño [Pavements: Materials, Construction and Design], 1st ed.; ECOE: Bogotá, Colombia, 2015. [Google Scholar]
- Djakfar, L.; Bowoputro, H.; Prawiro, B.; Tarigan, N. Performance of recycled porous hot mix asphalt with gilsonite additive. HPC Adv. Civ. Eng. 2015, 2015, 316719. [Google Scholar] [CrossRef] [Green Version]
- Rondón-Quintana, H.A.; Chaves-Pabón, S.; Escobar, D.A. Behavior of a porous asphalt mixture modified with Gilsonite. Indian J. Sci. Technol. 2018, 11, 131587. [Google Scholar] [CrossRef]
- Rondón-Quintana, H.A.; Zafra, C.; Rodriguez, J.P. Behavior of a hot mix asphalt using gilsonite and recycled concrete aggregate. Int. J. Adv. Sci. Technol. 2020, 29, 9723–9733. [Google Scholar]
- Rondón-Quintana, H.A.; Ruge, J.C.; Muniz de Farias, M. Behavior of a hot mix asphalt containing blast furnace slag as aggregate: Evaluation by mass and volume substitution. J. Mater. Civ. Eng. 2019, 31, 04018364. [Google Scholar] [CrossRef]
- Rondón-Quintana, H.A.; Zafra-Mejía, C.A.; Ruge-Cárdenas, J.C. Use of recycled concrete aggregate as a substitute of a natural aggregate by mass and volume within an asphalt concrete base. Int. J. Adv. Sci. Technol. 2020, 29, 10845–10850. [Google Scholar]
- Delgado, M.G.; Sánchez, J.A.; Rondón-Quintana, H.A.; Fernández, W.D.; Reyes, F.A. Influence of four non-conventional additives on the physical, rheological and thermal properties of an asphalt. Ing. Investig. 2018, 32, 18–26. [Google Scholar] [CrossRef]
- Shenoy, A.V. Determination of the temperature for mixing aggregates with polymer-modified asphalt. Int. J. Pavement Eng. 2001, 2, 33–47. [Google Scholar] [CrossRef]
- West, R.C.; Watson, D.E.; Turner, P.A.; Casola, J.R. Mixing and Compaction Temperatures of Asphalt Binders in Hot-Mix Asphalt. NCHRP Rep. 648; Transportation Research Board: Washington, DC, USA, 2010; p. 156. [Google Scholar]
- Cox, B.C.; Smith, B.T.; Howard, I.L.; James, R.S. State of knowledge for Cantabro testing of dense graded asphalt. J. Mater. Civ. Eng. 2017, 29, 04017174. [Google Scholar] [CrossRef]
- Doyle, J.D.; Howard, I.L. Characterization of dense-graded asphalt with the Cantabro test. J. Test. Eval. 2016, 44, 77–88. [Google Scholar] [CrossRef]
- Rondón-Quintana, H.A.; Ruge-Cárdenas, J.C.; Bastidas-Martínez, J.G.; Velandia-Castelblanco, M.Y.; Muniz De Farias, M. Use of thermally treated bentonite as filler in hot mix asphalt. J. Mater. Civil. Eng. 2020, 32, 1–10. [Google Scholar] [CrossRef]
- Bharath, G.; Reddy, K.S.; Tandon, V.; Reddy, M.A. Aggregate gradation effect on the fatigue performance of recycled asphalt mixtures. Road Mater. Pavement Des. 2021, 22, 165–184. [Google Scholar] [CrossRef]
Test | Method | Unit | Value |
---|---|---|---|
Tests on the original AC | |||
Penetration (25 °C, 100 g, 5 s) | ASTM D-5 | 0.1 mm | 63.8 |
Softening point | ASTM D-36–95 | °C | 51.7 |
Absolut viscosity (60 °C) | ASTM D-4402 | Poises | 1690 |
Specific gravity | AASHTO T 228–04 | - | 1.012 |
Viscosity to 135° C | AASHTO T-316 | Pa-s | 0.35 |
Tests on the residue of AC after the RTFOT (Rolling Thin Film Oven Test) | |||
Mass loss | ASTM D-2872 | % | 0.57 |
Penetration (25 °C, 100 g, 5 s), in percentage of the original penetration | ASTM D-5 | % | 70 |
Increase on the softening point | ASTM D-36–95 | °C | 5 |
Test | Method | NA | RCA |
---|---|---|---|
Specific gravity/absorption—coarse | AASHTO T 84 AASHTO T 85 | 2.65/1.8% | 2.52/4.9% |
Specific gravity/absorption—fine | 2.53/1.5% | 2.48/5.2% | |
Los Angeles Machine, 500 revolutions | AASHTO T 96 | 22.7% | 31.1% |
Micro-deval | AASHTO T327 | 21.1% | 29.0% |
Fractured particles: 1 face | ASTM D 5821 | 87.6% | 97.2% |
Plasticity index | ASTM D 4318 | No plastic | No plastic |
Flattening index | NLT 354 | 6.5% | 3.0% |
Elongation index | 8.2% | 2.2% |
Test | Method | Unit | Value |
---|---|---|---|
Tests on the original AC | |||
Penetration (25 °C, 100 g, 5 s) | ASTM D-5 | 0.1 mm | 42.0 |
Softening point | ASTM D-36-95 | °C | 75.6 |
Specific gravity | AASHTO T 228-04 | - | 1.014 |
Viscosity to 135 °C | AASHTO T-316 | Pa-s | 1.02 |
Tests on the residue of AC after the RTFOT | |||
Mass loss | ASTM D-2872 | % | 0.44 |
Parameter | MDC-19 OAC = 5.5% | MDC-19-M OAC = 6.0% | MDC-19-V OAC = 5.5% | MDC-25 OAC = 5.0% | MDC-25-M OAC = 5.5% | MDC-25-V OAC = 5.0% |
---|---|---|---|---|---|---|
S (kN) | 12.3 | 12.7 | 13.0 | 12.5 | 12.7 | 13.1 |
F (mm) | 3.47 | 3.89 | 3.50 | 3.44 | 3.78 | 3.61 |
S/F (kN/mm) | 3.53 | 3.26 | 3.71 | 3.65 | 3.35 | 3.64 |
Va (%) | 4.2 | 5.8 | 4.9 | 5.4 | 6.2 | 5.9 |
VMA (%) | 16.6 | 18.9 | 17.1 | 16.6 | 18.2 | 17.0 |
VFA (%) | 74.6 | 69.2 | 71.2 | 67.7 | 65.9 | 65.0 |
Parameter | MDC-19 | MDC-19-M | MDC-19-V | MDC-25 | MDC-25-M | MDC-25-V |
---|---|---|---|---|---|---|
ITS-U (kPa) | 1070.6 | 1026.7 | 1110.2 | 1111.4 | 1015.6 | 1151.9 |
ITS-C (kPa) | 967.8 | 849.2 | 1002.3 | 958.9 | 827.7 | 1002.3 |
TSR (%) | 90.4 | 82.7 | 90.3 | 86.3 | 81.5 | 87.0 |
Mass Loss—ML (%) at 500 Revolutions | |||||
---|---|---|---|---|---|
MDC-19 | MDC-19-M | MDC-19-V | MDC-25 | MDC-25-M | MDC-25-V |
8.82 | 9.21 | 8.66 | 9.87 | 11.10 | 9.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuluaga-Astudillo, D.A.; Rondón-Quintana, H.A.; Zafra-Mejía, C.A. Mechanical Performance of Gilsonite Modified Asphalt Mixture Containing Recycled Concrete Aggregate. Appl. Sci. 2021, 11, 4409. https://doi.org/10.3390/app11104409
Zuluaga-Astudillo DA, Rondón-Quintana HA, Zafra-Mejía CA. Mechanical Performance of Gilsonite Modified Asphalt Mixture Containing Recycled Concrete Aggregate. Applied Sciences. 2021; 11(10):4409. https://doi.org/10.3390/app11104409
Chicago/Turabian StyleZuluaga-Astudillo, Daniel Alberto, Hugo Alexander Rondón-Quintana, and Carlos Alfonso Zafra-Mejía. 2021. "Mechanical Performance of Gilsonite Modified Asphalt Mixture Containing Recycled Concrete Aggregate" Applied Sciences 11, no. 10: 4409. https://doi.org/10.3390/app11104409
APA StyleZuluaga-Astudillo, D. A., Rondón-Quintana, H. A., & Zafra-Mejía, C. A. (2021). Mechanical Performance of Gilsonite Modified Asphalt Mixture Containing Recycled Concrete Aggregate. Applied Sciences, 11(10), 4409. https://doi.org/10.3390/app11104409