Study of Image Classification Accuracy with Fourier Ptychography
Abstract
:1. Introduction
2. Methodology
2.1. Fourier Ptychography
2.2. Image Classification
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, G.; Horstmeyer, R.; Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonic 2013, 7, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Shen, C.; Jiang, S.; Song, P.; Yang, C. Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys. 2021, 3, 207–223. [Google Scholar] [CrossRef]
- Tian, L.; Li, X.; Ramchandran, K.; Waller, L. Multiplexed coded illumination for Fourier ptychography with an LED array microscope. Biomed. Opt. Express 2014, 5, 2376–2389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Chen, Q.; Zhang, J.; Fan, Y.; Zuo, C. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography. Opt. Lett. 2018, 43, 3365–3368. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zuo, C.; Zhang, J.; Fan, Y.; Chen, Q. High-speed Fourier ptychographic microscopy based on programmable annular illuminations. Sci. Rep. 2018, 8, 7669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; Guo, K.; Liao, J.; Zheng, G. Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow. Biomed. Opt. Express 2018, 9, 3306–3319. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Xue, Y.; Li, Y.; Tian, L.; Nehmetallah, G. Deep learning approach for Fourier ptychography microscopy. Opt. Express 2018, 26, 26470–26484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Wu, Y.; Souza, A.M.D.; Abidin, A.Z.; Wismüller, A.; Xu, C. MRI tumor segmentation with densely connected 3D CNN. In Proceedings of the Medical Imaging 2018: Image Processing, (International Society for Optics and Photonics), Houston, TX, USA, 11–13 February 2018; Volume 105741F. [Google Scholar]
- Zhu, P.; Wen, L.; Bian, X.; Ling, H.; Hu, Q. Vision meets drones: A challenge. arXiv 2018, arXiv:1804.07437. [Google Scholar]
- Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv 2017, arXiv:1706.02677. [Google Scholar]
- Zhang, H.; Zhou, W.-J.; Liu, Y.; Leber, D.; Banerjee, P.; Basunia, M.; Poon, T.-C. Evaluation of finite difference and FFT-based solutions of the transport of intensity equation. Appl. Opt. 2017, 57, A222–A228. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.-J.; Guan, X.; Liu, F.; Yu, Y.; Zhang, H.; Poon, T.-C.; Banerjee, P.P. Phase retrieval based on transport of intensity and digital holography. Appl. Opt. 2018, 57, A229–A234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, W.; Leber, D.; Hu, Z.; Yang, X.; Tsang, P.W.M.; Poon, T.-C. Development of lossy and near-lossless compression methods for wafer surface structure digital holograms. J. Micro/Nanolithogr. MEMS MOEMS 2015, 14, 41304. [Google Scholar] [CrossRef]
- Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017, arXiv:1708.07747. [Google Scholar]
- Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random erasing data augmentation. arXiv 2017, arXiv:1708.04896. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Perez, L.; Wang, J. The effectiveness of data augmentation in image classification using deep learning. arXiv 2017, arXiv:1712.04621. [Google Scholar]
- Zhong, Z.; Zheng, L.; Zheng, Z.; Li, S.; Yang, Y. Camera Style Adaptation for Person Re-identification. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 5157–5166. [Google Scholar]
- Wang, R.; Song, P.; Jiang, S.; Yan, C.; Zhu, J.; Guo, C.; Bian, Z.; Wang, T.; Zheng, G. Virtual brightfield and fluorescence staining for Fourier ptychography via unsupervised deep learning. Opt. Lett. 2020, 45, 5405–5408. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cheng, S.; Xue, Y.; Tian, L. Displacement-agnostic coherent imaging through scatter with an interpretable deep neural network. Opt. Express 2021, 29, 2244–2257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, L.; Zhou, W.; Hu, Z.; Tsang, P.; Poon, T.-C. Fourier Ptychography: Effectiveness of image classification. In Proceedings of the SPIE, Melbourne, Australia, 14–17 October 2019; Volume 11205, pp. 112050G-1–112050G-8. [Google Scholar]
- Wang, L.; Song, Q.; Zhang, H.; Yuan, C.; Poon, T.-C. Optical scanning Fourier ptychographic microscopy. Appl. Opt. 2021, 60, A243–A249. [Google Scholar] [CrossRef] [PubMed]
- Gowdra, N.; Sinha, R.; MacDonell, S. Examining convolutional feature extraction using Maximum Entropy (ME) and Signal-to-Noise Ratio (SNR) for image classification. In Proceedings of the IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–22 October 2020; pp. 471–476. [Google Scholar]
- Li, Q.; Shen, L.; Guo, S.; Lai, Z. Wavelet Integrated CNNs for Noise-Robust Image Classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 7245–7254. [Google Scholar]
Dataset | Numerical Aperture | Reconstruction Method | PSNR | SSIM | Classification Accuracy |
---|---|---|---|---|---|
CIFAR | Ground Truth | Inf | 1 | 76.61% | |
0.5 | FPM | 14.64 | 0.79 | 61.72% | |
Lower Resolution | 14.39 | 0.76 | 58.79% | ||
0.2 | FPM | 14.46 | 0.78 | 59.38% | |
Lower Resolution | 13.81 | 0.61 | 52.74% | ||
0.05 | FPM | 12.48 | 0.33 | 42.39% | |
Lower Resolution | 12.06 | 0.31 | 35.16% | ||
CalTech 101 | Ground Truth | Inf | 1 | 91.75% | |
0.5 | FPM | 13.37 | 0.52 | 73.75% | |
Lower Resolution | 12.82 | 0.50 | 61.50% | ||
0.2 | FPM | 13.11 | 0.53 | 65.50% | |
Lower Resolution | 12.44 | 0.49 | 36.25% | ||
0.05 | FPM | 11.09 | 0.31 | 20.00% | |
Lower Resolution | 10.69 | 0.38 | 4.75% |
Dataset | Numerical Aperture | Reconstruction Method | PSNR | SSIM | Classification Accuracy |
---|---|---|---|---|---|
MNIST | Ground Truth | Inf | 1 | 96.87% | |
0.5 | FPM | 27.82 | 0.84 | 96.29% | |
Lower Resolution | 22.11 | 0.53 | 95.89% | ||
0.2 | FPM | 23.99 | 0.63 | 97.66% | |
Lower Resolution | 16.81 | 0.33 | 94.73% | ||
0.05 | FPM | 12.12 | 0.13 | 89.06% | |
Lower Resolution | 11.58 | 0.05 | 62.50% | ||
Fashion MNIST | Ground Truth | Inf | 1 | 85.35% | |
0.5 | FPM | 26.88 | 0.88 | 84.57% | |
Lower Resolution | 22.69 | 0.72 | 83.59% | ||
0.2 | FPM | 23.88 | 0.76 | 83.20% | |
Lower Resolution | 17.50 | 0.47 | 83.01% | ||
0.05 | FPM | 11.96 | 0.19 | 78.23% | |
Lower Resolution | 11.94 | 0.11 | 67.58% |
Dataset | Numerical Aperture | Reconstruction Method | PSNR | SSIM | Classification Accuracy |
---|---|---|---|---|---|
Flowers | Ground Truth | Inf | 1 | 83.15% | |
0.5 | FPM | 19.26 | 0.80 | 81.25% | |
Lower Resolution | 18.42 | 0.68 | 74.19% | ||
0.2 | FPM | 18.66 | 0.70 | 76.30% | |
Lower Resolution | 17.35 | 0.59 | 72.14% | ||
0.05 | FPM | 16.02 | 0.41 | 70.28% | |
Lower Resolution | 15.33 | 0.47 | 49.18% | ||
Apple Pathology | Ground Truth | Inf | 1 | 99.56% | |
0.5 | FPM | 15.44 | 0.62 | 98.12% | |
Lower Resolution | 15.32 | 0.66 | 97.32% | ||
0.2 | FPM | 15.28 | 0.66 | 91.23% | |
Lower Resolution | 14.98 | 0.67 | 89.19% | ||
0.05 | FPM | 6.71 | 0.0082 | 90.12% | |
Lower Resolution | 6.64 | 0.0003 | 82.35% |
Multiple Linear Regression p-Value | p-Value | Statistical Significance (p < 0.05) |
---|---|---|
MNIST | 0.0046 | Yes |
Fashion-MNIST | 3.02 × 10−5 | Yes |
CIFAR | 0.02 | Yes |
CalTech101 | 1.87 × 10−6 | Yes |
Flowers | 0.0032 | Yes |
Apple Pathology | 0.04 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, Y.; Wang, L.; Hu, Z.; Zhou, W.; Tsang, P.W.M.; Cao, D.; Poon, T.-C. Study of Image Classification Accuracy with Fourier Ptychography. Appl. Sci. 2021, 11, 4500. https://doi.org/10.3390/app11104500
Zhang H, Zhang Y, Wang L, Hu Z, Zhou W, Tsang PWM, Cao D, Poon T-C. Study of Image Classification Accuracy with Fourier Ptychography. Applied Sciences. 2021; 11(10):4500. https://doi.org/10.3390/app11104500
Chicago/Turabian StyleZhang, Hongbo, Yaping Zhang, Lin Wang, Zhijuan Hu, Wenjing Zhou, Peter W. M. Tsang, Deng Cao, and Ting-Chung Poon. 2021. "Study of Image Classification Accuracy with Fourier Ptychography" Applied Sciences 11, no. 10: 4500. https://doi.org/10.3390/app11104500
APA StyleZhang, H., Zhang, Y., Wang, L., Hu, Z., Zhou, W., Tsang, P. W. M., Cao, D., & Poon, T. -C. (2021). Study of Image Classification Accuracy with Fourier Ptychography. Applied Sciences, 11(10), 4500. https://doi.org/10.3390/app11104500