Calculation of Transient Magnetic Field and Induced Voltage in Photovoltaic Bracket System during a Lightning Stroke
Abstract
:1. Introduction
2. Methodology for Calculating Transient Magnetic Field and Induced Voltage
2.1. Lightning Current Responses in Photovoltaic (PV) Bracket System
2.2. Formula Derivation of Transient Magnetic Field
2.3. Calculation of Induced Voltage
3. Experimental Verification
4. Numerical Example
4.1. Under Positive Lightning Stroke
4.2. Under Negative Lightning Stroke
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Damianaki, K.; Christodoulou, C.A.; Kokalis, C.A.; Kyritsis, A.; Ellinas, E.D.; Vita, V.; Gonos, I.E. Lightning protection of photovoltaic systems: Computation of the developed potentials. Appl. Sci. 2021, 11, 337. [Google Scholar] [CrossRef]
- Ahmad, N.I.; Ab-Kadir, M.Z.A.; Izadi, M.; Azis, N.; Radzi, M.A.M.; Zaini, N.H.; Nasir, M.S.M. Lightning protection on photovoltaic systems: A review on current and recommended practices. Renew. Sustain. Energy Rev. 2018, 82, 1611–1619. [Google Scholar] [CrossRef]
- Benesova, Z.; Haller, R.; Birkl, J.; Zahlmann, P. Overvoltages in photovoltaic systems induced by lightning strikes. In Proceedings of the 2012 International Conference on Lightning Protection (ICLP), Vienna, Austria, 2–7 September 2012. [Google Scholar]
- Coetzer, K.M.; Wiid, P.G.; Rix, A.J. Investigating lightning induced currents in photovoltaic modules. In Proceedings of the 2019 International Symposium on Electromagnetic Compatibility (EMC Europe 2019), Barcelona, Spain, 2–6 September 2019. [Google Scholar]
- Formisano, A.; Petrarca, C.; Hemandez, J.C.; Munoz-Rodriguez, F.J. Assessment of induced voltages in common and differential-mode for a PV module due to nearby lightning strikes. IET Renew Power. Gener. 2019, 13, 1369–1378. [Google Scholar] [CrossRef]
- Sun, Q.Q.; Zhong, X.; Liu, J.Y.; Feng Wang, F.; Chen, S.; Zhong, L.P.; Bian, X.M. Three-dimensional modeling on lightning induced overvoltage for photovoltaic arrays installed on mountain. J. Clean. Prod. 2021, 288, 125084. [Google Scholar] [CrossRef]
- Belik, M. PV panels under lightning conditions. In Proceedings of the 2014 15th International Scientific Conference on Electric Power Engineering (EPE), Brno-Bystrc, Czech Republic, 12–14 May 2014. [Google Scholar]
- Vranjkovina, M.; Helac, V.; Grebovic, S. Lightning protection model of photovoltaic power plants. In Proceedings of the International Symposium INFOTEH-JAHORINA, East Sarajevo, Bosnia and Herzegovina, 17–19 March 2021. [Google Scholar]
- Dimitriou, A.; Charalambous, C.A.; Kokkinos, N. Integrating the loss of economic value in lightning-related risk assessments of large scale photovoltaic systems participating in regulated and competitive energy markets. In Proceedings of the 2016 33rd International Conference on Lightning Protection (ICLP), Estoril, Portugal, 25–30 September 2016. [Google Scholar]
- Wang, X.W.; Zhang, X.Q. Numerical method for lightning transient analysis of photovoltaic bracket systems. J. Renew. Sustain. Energy 2020, 12, 033501. [Google Scholar] [CrossRef]
- Matsuda, K.; Higo, T. A simple lumped-equivalent circuit of a photovoltaic panel for transient simulations. In Proceedings of the 2014 49th International Universities Power Engineering Conference (UPEC), Cluj-Napoca, Romania, 2–5 September 2014. [Google Scholar]
- Wang, X.W.; Zhang, X.Q. Modeling of lightning transients in photovoltaic bracket systems. IEEE Access 2019, 7, 12262–12271. [Google Scholar] [CrossRef]
- Stern, H.J.; Karner, H.C. Lightning induced EMC phenomena in photovoltaic modules. In Proceedings of the 1993 International Symposium on Electromagnetic Compatibility, Dallas, TX, USA, 9–13 August 1993. [Google Scholar]
- Fuangfung, Y.; Sinthusonthishat, S.; Yutthagowith, P. A software tool for induced voltages and currents calculation caused by lightning electromagnetic field in PV systems. In Proceedings of the 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Hua Hin, Thailand, 24–27 June 2015. [Google Scholar]
- Tu, Y.P.; Zhang, C.N.; Hub, J.; Wang, S.C.; Sun, W.; Li, H.J. Research on lightning overvoltages of solar arrays in a rooftop photovoltaic power system. Electr. Power Syst. Res. 2013, 94, 10–15. [Google Scholar] [CrossRef]
- IEC 6320-1. Protection against Lightning-Part 1: General Principles; IEC: Geneva, Switzerland, 2010. [Google Scholar]
- Chinese National Standard, GB 50057. Design Code for Protection of Structures against Lightning; Planning Press: Beijing, China, 2010. [Google Scholar]
- Chinese National Standard, GB/T 50063. Code for Design of Overvoltage Protection and Insulation Coordination for AC Electrical Installations; Planning Press: Beijing, China, 2014. [Google Scholar]
- William, H.H., Jr.; John, B. Engineering Electromagnetics, 7th ed.; McGraw Hill Company, Inc.: New York, NY, USA, 2005; pp. 243–308. [Google Scholar]
- Rubinstein, M.; Uman, M.A. Methods for calculating the electromagnetic fields from a known source distribution. IEEE Trans. Electromagn. Compat. 1989, 31, 183–189. [Google Scholar] [CrossRef]
- Ametani, A.; Kasai, Y.; Swaada, J.; Mochizuki, A.; Yamada, T. Frequency-dependent impedance of vertical conductors and multiconductor tower model. IEEE Proc. Gener. Transm. Distrib. 1994, 141, 339–345. [Google Scholar] [CrossRef]
- Chen, H.C.; Zhang, Y.; Du, Y.P.; Chen, Q.S. Lightning propagation analysis on telecommunication towers above the perfect ground using full-wave time domain. IEEE Trans. Electromagn. Compat. 2019, 61, 697–704. [Google Scholar] [CrossRef]
- Zhang, X.Q. An improved approach for modeling lightning transients of wind turbines. Int. J. Electr. Power. Energy Syst. 2018, 101, 429–438. [Google Scholar] [CrossRef]
- Feng, C.Z.; Ma, X.K. Introduction to Engineering Electromagnetic Field; High Education Press: Beijing, China, 2004; pp. 188–189. [Google Scholar]
- Yamamoto, K.; Takami, J.; Okabe, N. Overvoltages on DC side of power conditioning caused by lightning stroke to structure anchoring photovoltaic panels. Electr. Eng. Jpn. 2014, 187, 903–913. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Chen, C.Y.; Wang, C.C. High-Voltage Testing Technology, 3rd ed.; Tsinghua University Press: Beijing, China, 2009; pp. 181–186. [Google Scholar]
- Ponald, B.S. Protection of Electronic Circuits from Overvoltages; John Wiley & Sons: New York, NY, USA, 2002; p. 202. [Google Scholar]
- Vagner, D.; Lembrikov, B.I. Quasi-Static Electromagnetic Field; Springer Publisher: Berlin, Germany, 2004; pp. 68–72. [Google Scholar]
Parameters | Rp (Ω) | Lp (μH) | Cp (pF) |
---|---|---|---|
Loop 1 | 0.0082 | 0.22 | 148.0 |
Loop 2 | 0.0068 | 0.19 | 114.0 |
Oscilloscope | 50 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, Y. Calculation of Transient Magnetic Field and Induced Voltage in Photovoltaic Bracket System during a Lightning Stroke. Appl. Sci. 2021, 11, 4567. https://doi.org/10.3390/app11104567
Zhang X, Wang Y. Calculation of Transient Magnetic Field and Induced Voltage in Photovoltaic Bracket System during a Lightning Stroke. Applied Sciences. 2021; 11(10):4567. https://doi.org/10.3390/app11104567
Chicago/Turabian StyleZhang, Xiaoqing, and Yaowu Wang. 2021. "Calculation of Transient Magnetic Field and Induced Voltage in Photovoltaic Bracket System during a Lightning Stroke" Applied Sciences 11, no. 10: 4567. https://doi.org/10.3390/app11104567
APA StyleZhang, X., & Wang, Y. (2021). Calculation of Transient Magnetic Field and Induced Voltage in Photovoltaic Bracket System during a Lightning Stroke. Applied Sciences, 11(10), 4567. https://doi.org/10.3390/app11104567