Acoustical Properties of Fiberglass Blankets Impregnated with Silica Aerogel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Materials Characterization
3. Modeling of the Acoustical Properties of Fibrous and Granular Media
4. Results and Discussion
4.1. Microstructural Analysis
4.2. Acoustical Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Directive 2012/27/EU of the european parliament and of the council of 25 October 2012 on energy efficiency, amending directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC. OJEU 2012, 55, 315/97.
- Directive (EU) 2018/2002 of the European parliament and of the council of 11 December 2018 amending Directive 2012/27/EU on energy efficiency. OJEU 2018, 328/20. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2018.328.01.0210.01.ENG (accessed on 17 May 2021).
- Riffat, S.B.; Qiu, G. A review of state-of-the-art aerogel applications in buildings. Int. J. Low-Carbon Technol. 2013, 8, 1–6. [Google Scholar] [CrossRef]
- Mazrouei-Sebdani, Z.; Begum, H.; Schoenwald, S.; Horoshenkov, K.V.; Malfait, W.J. A review on silica aerogel-based materials for acoustic applications. J. Non Cryst. Solids 2021, 562, 120770. [Google Scholar] [CrossRef]
- Duer, K.; Svendsen, S. Monolithic silica aerogel in superinsulating glazings. Sol. Energy 1998, 63, 259–267. [Google Scholar] [CrossRef]
- Talebi, Z.; Soltani, P.; Habibi, N.; Latif, F. Silica aerogel/polyester blankets for efficient sound absorption in buildings. Constr. Build. Mater. 2019, 220, 76–89. [Google Scholar] [CrossRef]
- Koebel, M.M.; Rigacci, A.; Achard, P. Aerogel-based thermal superinsulation: An overview. J. Sol. Gel. Sci. Technol. 2012, 63, 315–339. [Google Scholar] [CrossRef] [Green Version]
- Nocentini, K.; Achard, P.; Biwole, P.; Stipetic, M. Hygro-thermal properties of silica aerogel blankets dried using microwave heating for building thermal insulation. Energy Build. 2018, 158, 14–22. [Google Scholar] [CrossRef]
- Rwawiire, S.; Tomkova, B.; Militky, J.; Hes, L.; Kale, B.M. Acoustic and thermal properties of a cellulose nonwoven natural fabric (barkcloth). Appl. Acoust. 2017, 116, 177–183. [Google Scholar] [CrossRef]
- Ramamoorthy, M.; Pisal, A.A.; Rengasamy, R.S.; Rao, A.V. In-situ synthesis of silica aerogel in polyethylene terephthalate fibre nonwovens and their composite properties on acoustical absorption behavior. J. Porous Mater. 2018, 25, 179–187. [Google Scholar] [CrossRef]
- Tascan, M.; Vaughn, E.A.; Stevens, K.A.; Brown, P.J. Effects of total surface area and fabric density on the acoustical behavior of traditional thermal-bonded highloft nonwoven fabrics. J. Text. Inst. 2011, 102, 746. [Google Scholar] [CrossRef]
- Fernandez-Marin, A.A.; Jimenez, N.; Groby, J.-P.; Sanchez-Dehesa, J.; Romero-Garcia, V. Aerogel-based metasurfaces for perfect acoustic energy absorption. Appl. Phys. Lett. 2019, 115, 061901. [Google Scholar] [CrossRef] [Green Version]
- Geslain, A.; Groby, J.-P.; Romero-Garcia, V.; Cervera, F.; Sanchez-Dehesa, J. Acoustic characterization of silica aerogel clamped plates for perfect absorption, J. Non Cryst. Solids 2018, 499, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Guild, M.D.; Garcia-Chocano, V.M.; Sanchez-Dehesa, J. Aerogel as a soft acoustic metamaterial for for airborne sound. Phys. Rev. Appl. 2016, 5, 034012. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.; Fricke, J. Sound propagation in SiO2 aerogels. J. Acoust. Soc. Am. 1992, 91, 2004–2006. [Google Scholar] [CrossRef]
- Forest, L.; Gibiat, V.; Woignier, T. Biot’s theory of acoustic propagation in porous media applied to aerogels and alcogels. J. Non Cryst. Solids 1998, 225, 287–292. [Google Scholar] [CrossRef]
- Gibiat, V.; Lefeuvre, O.; Woignier, T. Acoustic properties and potential applications of silica aerogels. J. Non Cryst. Solids 1995, 186, 244–255. [Google Scholar] [CrossRef]
- Forest, L.; Gibiat, V.; Hooley, A. Impedance matching and acoustic absorption in granular layers of silica aerogels. J. Non Cryst. Solids 2001, 285, 230–235. [Google Scholar] [CrossRef]
- Motahari, S.; Javadi, H.; Motahari, A. Silica-aerogel cotton composites as sound absorber. J. Mater. Civ. Eng. 2014, 27, 1–6. [Google Scholar] [CrossRef]
- Eskandari, N.; Motahari, S.; Atoufi, Z.; Motlagh, G.H.; Najafi, M. Thermal, mechanical, and acoustic properties of silica aerogel/UPVC composites. J. Appl. Polym. Sci. 2017, 134, 1–8. [Google Scholar] [CrossRef]
- Joung, Y.C.; Roe, M.J.; Yoo, Y.J.; Park, J.C.; Choi, H.J.; Kim, M.W. Method of Preparing Silica Aerogel Powder. U.S. Patent No. US 2012/0225003 A1, 6 September 2012. [Google Scholar]
- Sobha Rani, T.; Subha, M.C.S.; Venkata Reddy, G.; Kim, Y.-H.; Ahn, Y.-S. Synthesis of Water-Glass-Based Silica Aerogel Powder via with and Without Squeezing of Hydrogels. J. Appl. Polym. Sci. 2009, 115, 1675–1679. [Google Scholar] [CrossRef]
- Available online: https://www.lih-fe.com/en/product/Fiberglass-Needle-Mat-E-650C/fiberglass_needled_mat-001.html (accessed on 14 April 2021).
- Materiacustica Srl. Measurement Kit for Acoustical Complex Properties Testing. Available online: http://www.materiacustica.it/mat_UKProdotti_MAA.html (accessed on 27 January 2021).
- International Organisation for Standardization. Acoustics—“Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method”; ISO10534-2; International Organisation for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- Available online: https://local.armacell.com/fileadmin/cms/downloads/others/armagel/marketing-brochure/ArmaGelHT_Marketing_Brochure_English.pdf (accessed on 14 April 2021).
- Horoshenkov, K.V. A review of acoustical methods for porous material characterization. Int. J. Acoust. Vib. 2017, 22, 92–103. [Google Scholar]
- Horoshenkov, K.V.; Hurrell, A.; Groby, J.-P. A three-parameter analytical model for the acoustical properties of porous media. J. Acoust. Soc. Am. 2019, 145, 2512–2517. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://drive.google.com/drive/folders/1rA10utMecuzzuiiX5O-nHDrA8mzgCuEn (accessed on 16 April 2021).
- Hurrell, A.; Horoshenkov, K.V. On the relationship of the observed acoustical and related non-acoustical behaviours of nanofibers membranes using Biot and Darcy-type models. Appl. Acoust. 2021, 179, 108075. [Google Scholar] [CrossRef]
- Venegas, R.; Umnova, O. Influence of sorption on sound propagation in granular activated carbon. J. Acoust. Soc. Am. 2016, 140, 755–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Filling Ratio, % | Layer Thickness, , mm | Pore Size, , μm | Porosity, | Standard Deviation in Pore Size, | Calculated Porosity, | RMS Error, % |
---|---|---|---|---|---|---|
0 | 8.12 ± 0.77 | 99.4 ± 4.15 | 0.994 ± 0.0098 | 0 | 0.965 ± 0.0041 | 1.4 |
25 | 9.33 ± 1.60 | 48.0 ± 20.2 | 0.938 ± 0.018 | 0.160 ± 0.213 | 0.960 ± 0.0044 | 1.7 |
50 | 9.26 ± 0.47 | 32.8 ± 2.00 | 0.929 ± 0.011 | 0 | 0.952 ± 0.0026 | 1.8 |
75 | 10.35 ± 0.85 | 20.5 ± 1.35 | 0.959 ± 0.032 | 0 | 0.951 ± 0.0036 | 3.6 |
100 | 9.34 ± 0.84 | 83.0 ± 2.04 | 0.505 ± 0.091 | 0.55 ± 0.015 | 0.94 ± 0.0067 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begum, H.; Horoshenkov, K.V. Acoustical Properties of Fiberglass Blankets Impregnated with Silica Aerogel. Appl. Sci. 2021, 11, 4593. https://doi.org/10.3390/app11104593
Begum H, Horoshenkov KV. Acoustical Properties of Fiberglass Blankets Impregnated with Silica Aerogel. Applied Sciences. 2021; 11(10):4593. https://doi.org/10.3390/app11104593
Chicago/Turabian StyleBegum, Hasina, and Kirill V. Horoshenkov. 2021. "Acoustical Properties of Fiberglass Blankets Impregnated with Silica Aerogel" Applied Sciences 11, no. 10: 4593. https://doi.org/10.3390/app11104593
APA StyleBegum, H., & Horoshenkov, K. V. (2021). Acoustical Properties of Fiberglass Blankets Impregnated with Silica Aerogel. Applied Sciences, 11(10), 4593. https://doi.org/10.3390/app11104593