Strength and Durability of Hybrid Fiber-Reinforced Latex-Modified Rapid-Set Cement Preplaced Concrete for Emergency Concrete Pavement Repair
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Proportions and Test Specimen Preparation
2.3. Test Methods
2.3.1. Mechanical Properties
2.3.2. Durability
3. Test Results
3.1. Compressive Strength
3.2. Flexural Strength
3.3. Splitting Tensile Strength
3.4. Chloride Ion Penetration Resistance
3.5. Abrasion Resistance
3.6. Repeated Freezing and Thawing Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, K.-W.; Yu, C.; Han, J.-W.; Park, C.-G. Strength and durability of rapid set PVA fiber reinforced LMC for pavement repair. Polym. Polym. Compos. 2019, 27, 179–188. [Google Scholar] [CrossRef]
- Han, J.-W.; Jeon, J.-H.; Park, C.-G. Mechanical and Permeability Characteristics of Latex-Modified Pre-Packed Pavement Repair Concrete as a Function of the Rapid-Set Binder Content. Materials 2015, 8, 6728–6737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.G.; Jeon, M.J.; Cha, S.S.; Park, G.G. Mechanical and Permeability Characteristics of Latex-Modified Fiber-Reinforced Roller-Compacted Rapid-Hardening-Cement Concrete for Pavement Repair. Appl. Sci. 2017, 7, 694. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Jeon, J.C.; An, B.H.; Lee, J.H.; Kim, H.D.; Park, C.G. Effects of Reinforcing Fiber and Microsilica on the Mechanical and Chloride Ion Penetration Properties of Latex-Modified Fiber-Reinforced Rapid-Set Cement Concrete for Pavement Repair. Adv. Mater. Sci. Eng. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sprinkel, M. Latex-Modified Concrete Overlay Containing Type K Cement; FHWA/VTRC 05-R26; Virginia Transportation Research Council: Charlottesville, VA, USA, 2005. [Google Scholar]
- Sprinkel, M. High Early Strength Latex Modified Concrete Overlay; Report VTRC 88-R12; Virginia Transportation Research Council: Charlottesville, VA, USA, 1998. [Google Scholar]
- Sprinkel, M. Very-Early-Strength Latex-Modified Concrete Over-Lays; TAT99-TAR3; Virginia Transportation Research Council: Charlottesville, VA, USA, 1998. [Google Scholar]
- Won, J.-P.; Kim, J.-H.; Park, C.-G.; Kang, J.-W.; Kim, H.-Y. Shrinkage cracking of styrene butadiene polymeric emulsion-modified concrete using rapid-hardening cement. J. Appl. Polym. Sci. 2009, 112, 2229–2234. [Google Scholar] [CrossRef]
- Oh, R.O.; Kim, D.H.; Park, C.G. Durability performance of latex modified nylon fiber reinforced concrete for precast concrete pavement applications. Indian J. Eng. Mater. Sci. 2014, 21, 49–56. [Google Scholar]
- Cavalline, T.L.; Newsome, R.A.; Tempest, B.Q.; Leach, J.W. Autogenous Shrinkage of Internally Cured Conventional, Latex-Modified, and Very High Early Strength Latex-Modified Concrete and Mortar. Adv. Civ. Eng. Mater. 2020, 9, 557–573. [Google Scholar] [CrossRef]
- Shi, C.; Wang, P.; Ma, C.; Zou, X.; Yang, L. Effects of SAE and SBR on properties of rapid hardening repair mortar. J. Build. Eng. 2020, 35, 102000. [Google Scholar] [CrossRef]
- Won, J.-P.; Kim, J.-H.; Lee, S.-W.; Park, C.-G. Durability of Low-Heat, Ultra Rapid-Hardening, Latex-Modified Polymer Concrete. Prog. Rubber Plast. Recycl. Technol. 2009, 25, 91–102. [Google Scholar] [CrossRef]
- Yun, K.-K.; Choi, P. Causes and controls of cracking at bridge deck overlay with very-early strength latex-modified concrete. Constr. Build. Mater. 2014, 56, 53–62. [Google Scholar] [CrossRef]
- Kim, W.; Oh, R.-O.; Lee, J.-H.; Kim, M.-S.; Jeon, S.-M.; Park, C.-G. Mechanical and durability characteristics of latex-modified fiber-reinforced segment concrete as a function of microsilica content. Adv. Civ. Eng. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wang, R.; Zhang, Y. Influence of dually mixing with latex powder and poly-propylene fiber on toughness and shrinkage performance of overlay repair mortar. Constr. Build. Mater. 2020, 261, 120521. [Google Scholar] [CrossRef]
- Mobasher, B.; Li, C.Y. Effect of interfacial properties on the crack propagation in cementitious composites. Adv. Cem. Based Mater. 1996, 4, 93–105. [Google Scholar] [CrossRef]
- Shannag, M.J.; Brinker, R.; Hansen, W. Pullout behavior of steel fibers from cement-based composites. Cem. Concr. Res. 1997, 27, 925–936. [Google Scholar] [CrossRef]
- Singha, S.; Shuklaa, A.; Brown, R. Pullout behavior of polypropylene fibers from cementitious matrix. Cem. Concr. Res. 2004, 34, 1919–1925. [Google Scholar] [CrossRef]
- Korea Expressway Corporation. Construction Material Quality and Standard for Highway Construction; Korea Expressway Corporation: Seongnam, Korea, 2005. [Google Scholar]
- AASHTO. Standard Specification of Rigid Pavement; American Association of State Highway and Transportation Officials: Washington, DC, USA, 1998. [Google Scholar]
- ASTM. ASTM C1202. Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration; American Society for Testing and Materials: Philadelphia, PA, USA, 2012. [Google Scholar]
- ASTM. ASTM C39. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; American Society for Testing and Materials: Philadelphia, PA, USA, 2015. [Google Scholar]
- ASTM. ASTM C 78/C78M. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading); American Society for Testing and Materials: Philadelphia, PA, USA, 2015. [Google Scholar]
- ASTM. ASTM C496/C496M. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens; American Society for Testing and Materials: Philadelphia, PA, USA, 2011. [Google Scholar]
- ASTM. ASTM C944. Standard Test Method for Abrasion Resistance of Concrete or Mortar Surfaces by the Rotating-Cutter Method; American Society for Testing and Materials: Philadelphia, PA, USA, 2012. [Google Scholar]
- ASTM C666/C666M. Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing; American Society for Testing and Materials: Philadelphia, PA, USA, 2015. [Google Scholar]
- De Melo, F.M.C.; de Jesus Cruz, A.C.A.; de Souza Netto, L.D.; de Souza Simplício, M.A. Experimental study of bond between steel bars and hybrid fibers reinforced concrete. Constr. Build. Mater. 2021, 275, 122176. [Google Scholar] [CrossRef]
- Nassani, D.E. Experimental and analytical study of the mechanical and flexural behavior of hybrid fiber concretes. Structures 2020, 28, 1746–1755. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, C.G. Strength, permeability and durability of hybrid fiber-reinforced concrete containing styrene butadiene latex. J. Appl. Polym. Sci. 2013, 129, 1499–1505. [Google Scholar] [CrossRef]
- Choi, P.; Yun, K.-K. Experimental analysis of latex-solid content effect on early-age and autogenous shrinkage of very-early strength latex-modified concrete. Constr. Build. Mater. 2014, 65, 396–404. [Google Scholar] [CrossRef]
- Fang, X.; Mingkai, Z.; Jianping, C.; Shaoqin, R. Mechanical performance evaluation of polyester fiber and SBR latex compound-modified cement concrete road overlay material. Constr. Build. Mater. 2014, 63, 142–149. [Google Scholar]
SiO2(%) | Al2O3(%) | Fe2O3(%) | CaO(%) | MgO(%) | K2O(%) | SO3(%) |
---|---|---|---|---|---|---|
13 ± 3 | 17.5 ± 3 | 3> | 50 ± 3 | 2.5> | 0.21 | 14 ± 3 |
Density (g/mm3) | Absorption (%) | Fine Modulus |
---|---|---|
2.61 | 0.35 | 6.92 |
Solids Content (%) | Styrene Content (%) | Butadiene Content (%) | pH | Density (g/mm3) | Surface Tension (dyne/cm) | Particle Size (A) | Viscosity (cps) |
---|---|---|---|---|---|---|---|
46.5 | 34 ± 1.5 | 66 ± 1.5 | 11.0 | 1.02 | 30.57 | 1700 | 42 |
Properties | Jute Fiber | PVA Fiber | Nylon Fiber |
---|---|---|---|
Elastic modulus (GPa) | 61 | 45 | 35 |
Tensile strength (MPa) | 510 | 1600 | 800 |
Density (g/mm3) | 1.26 | 1.26 | 1.16 |
Fiber length (mm) | 6 | 3 | 3 |
Fiber diameter (mm) | 0.015 | 0.015 | 0.023 |
Design Compressive Strength: 4 h (MPa) | Maximum Size of Coarse Aggregate (mm) | W */C (%) | Unit Weight (kg/m3) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Water | Rapid Set Cement | Fine Aggregate | Coarse Aggregate | Latex | Reinforcing Fibers | ||||||
Solid | Water | PVA | Jute | Nylon | |||||||
21 | 25 | 28 | 43 | 400 | 1015 | 832 | 60 | 69 | 0 | 0 | 0 |
1.2 | 0 | 0 | |||||||||
0 | 1.2 | 0 | |||||||||
0 | 0 | 1.2 | |||||||||
0 | 0.6 | 0.6 | |||||||||
0.6 | 0.6 | 0 | |||||||||
0.6 | 0 | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-J.; Shin, H.-J.; Park, C.-G. Strength and Durability of Hybrid Fiber-Reinforced Latex-Modified Rapid-Set Cement Preplaced Concrete for Emergency Concrete Pavement Repair. Appl. Sci. 2021, 11, 4595. https://doi.org/10.3390/app11104595
Lee S-J, Shin H-J, Park C-G. Strength and Durability of Hybrid Fiber-Reinforced Latex-Modified Rapid-Set Cement Preplaced Concrete for Emergency Concrete Pavement Repair. Applied Sciences. 2021; 11(10):4595. https://doi.org/10.3390/app11104595
Chicago/Turabian StyleLee, Su-Jin, Hyung-Jin Shin, and Chan-Gi Park. 2021. "Strength and Durability of Hybrid Fiber-Reinforced Latex-Modified Rapid-Set Cement Preplaced Concrete for Emergency Concrete Pavement Repair" Applied Sciences 11, no. 10: 4595. https://doi.org/10.3390/app11104595
APA StyleLee, S. -J., Shin, H. -J., & Park, C. -G. (2021). Strength and Durability of Hybrid Fiber-Reinforced Latex-Modified Rapid-Set Cement Preplaced Concrete for Emergency Concrete Pavement Repair. Applied Sciences, 11(10), 4595. https://doi.org/10.3390/app11104595