Towards Improving the Durability and Overall Performance of PV-ETICS by Application of a PCM Layer
Abstract
:Featured Application
Abstract
1. Introduction
2. En-ActivETICS as a Proposed Solution for Active External Walls
2.1. Construction
2.2. Computational Model
- Isc,ref—short-circuit current in reference conditions [A]
- Voc,ref—open-circuit voltage in reference conditions [V]
- ET,eff—effective irradiance incident on the surface of PV cells [W/m2]
- ET,ref—irradiance incident on the surface of PV cells in reference conditions, ET,ref = 1000 W/m2
- Tcell—PV cell temperature [°C]
- Tcell,ref—PV cell temperature in reference conditions, Tcell,ref = 25 °C
- α—temperature coefficient of Isc [1/°C]
- γ—temperature coefficient of Voc [1/°C]
- β—irradiance coefficient of Voc [-]
- Imp,ref—maximum power point current in reference conditions [A]
- Vmp,ref—maximum power point voltage in reference conditions [V]
- Ceff—effective heat capacity [J/kg K]
- TM—melting temperature [°C]
- TS—solidification temperature [°C]
2.3. Climate
3. Initial Investigations and Problem Definition
- determination of the amount of solar energy received by the panel when the temperature is above 80 °C;
- determination of the amount of energy converted into electricity;
- determination of the daily sum of solar energy converted into heat.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tripathy, M.; Sadhu, P.K.; Panda, S.K. A critical review on building integrated photovoltaic products and their applications. Renew. Sustain. Energy Rev. 2016, 61, 451–465. [Google Scholar] [CrossRef]
- Knera, D.; Heim, D. Application of a BIPV to cover net energy use of the adjacent office room. Manag. Environ. Qual. Int. J. 2016, 27, 649–662. [Google Scholar] [CrossRef]
- Zhou, C.; Liang, R.; Zhang, J.; Riaz, A. Experimental Study on Dynamic Thermal Response of Building Attached Photovoltaic (BAPV) Curtain Wall System. Procedia Eng. 2017, 205, 314–320. [Google Scholar] [CrossRef]
- Bigaila, E.; Athienitis, A.K. Modeling and simulation of a photovoltaic/thermal air collector assisting a façade integrated small scale heat pump with radiant PCM panel. Energy Build. 2017, 149, 298–309. [Google Scholar] [CrossRef]
- Biyik, E.; Araz, M.; Hepbasli, A.; Shahrestani, M.; Yao, R.; Shao, L.; Essah, E.; Oliveira, A.C.; del Caño, T.; Rico, E.; et al. A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. Int. J. 2017, 20, 833–858. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sudhakar, K.; Baredar, P. Recent advancement in BIPV product technologies: A review. Energy Build. 2017, 140, 188–195. [Google Scholar] [CrossRef]
- Chwieduk, B.; Chwieduk, D. Analysis of operation and energy performance of a heat pump driven by a PV system for space heating of a single family house in polish conditions. Renew. Energy 2020, 165, 117–126. [Google Scholar] [CrossRef]
- Asaee, S.R.; Nikoofard, S.; Ugursal, V.I.; Beausoleil-Morrison, I. Techno-economic assessment of photovoltaic (PV) and building integrated photovoltaic/thermal (BIPV/T) system retrofits in the Canadian housing stock. Energy Build. 2017, 152, 667–679. [Google Scholar] [CrossRef] [Green Version]
- Weerasinghe, R.P.N.P.; Yang, R.J.; Wakefield, R.; Too, E.; Le, T.; Corkish, R.; Chen, S.; Wang, C. Economic viability of building integrated photovoltaics: A review of forty-five (45) non-domestic buildings in twelve (12) western countries. Renew. Sustain. Energy Rev. 2021, 137, 110622. [Google Scholar] [CrossRef]
- Heim, D.; Chodak, I.; Ilomets, S.; Knera, D.; Wieprzkowicz, A.; Kalamees, T. The integration of selected technology to energy activated ETICS—Theoretical approach. In Proceedings of the 12th Nordic Symposium on Building Physics (NSB 2020), Tallinn, Estonia, 6–9 September 2020; (E3S Web of Conferences). Kurnitski, J., Kalamees, T., Eds.; EDP Sciences: Les Ulis, France, 2020; Volume 172, p. 21004. [Google Scholar]
- Ilomets, S.; Kalamees, T. Case-study analysis on hygrothermal performance of ETICS on concrete wall after low-budget energy renovation. In Proceedings of the Thermal Performance of the Exterior Envelopes of Whole Buildings—12th International Conference, Clearwater, FL, USA, 1–5 December 2013; ASHRAE: Atlanta, GA, USA, 2013. [Google Scholar]
- Ilomets, S.; Heim, D.; Chodak, I.; Czarny, D.; Kalamees, T. A method to develop energy activated ETICS. In Proceedings of the 12th Nordic Symposium on Building Physics (NSB 2020), Tallinn, Estonia, 6–9 September 2020; (E3S Web of Conferences). Kurnitski, J., Kalamees, T., Eds.; EDP Sciences: Les Ulis, France, 2020; Volume 172, p. 21006. [Google Scholar]
- Heim, D. The simultaneous effect of the operating temperature and solar radiation on the efficiency of photovoltaic panels. Arch. Civ. Eng. 2011, 57, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, A.; Yang, H.; Huang, J. Study on the thermal stress distribution of crystalline silicon solar cells in BIPV. Energy Procedia 2016, 88, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Pandian, A.; Bansal, K.; Thiruvadigal, D.J.; Sakthivel, S. Fire Hazards and Overheating Caused by Shading Faults on Photo Voltaic Solar Panel. Fire Technol. 2016, 52, 349–364. [Google Scholar] [CrossRef]
- Omazic, A.; Oreski, G.; Halwachs, M.; Eder, G.C.; Hirschl, C.; Neumaier, L.; Pinter, G.; Erceg, M. Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: A literature review. Sol. Energy Mater. Sol. Cells 2019, 192, 123–133. [Google Scholar] [CrossRef]
- Park, N.C.; Oh, W.W.; Kim, D.H. Effect of Temperature and Humidity on the Degradation Rate of Multicrystalline Silicon Photovoltaic Module. Int. J. Photoenergy 2013, 2013, 925280. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, S.; Whitfield, K.; TamizhMani, G.; Koehl, M.; Miller, D.; Joyce, J.; Wohlgemuth, J.; Bosco, N.; Kempe, M.; Zgonena, T. Evaluation of high-temperature exposure of photovoltaic modules. Prog. Photovolt. Res. Appl. 2011, 19, 954–965. [Google Scholar] [CrossRef] [Green Version]
- Mehta, S.; Biederman, S.; Shivkumar, S. Thermal degradation of foamed polystyrene. J. Mater. Sci. 1995, 30, 2944–2949. [Google Scholar] [CrossRef]
- Nowoświat, A.; Krause, P.; Miros, A. Properties of expanded graphite polystyrene damaged by the impact of solar radiation. J. Build. Eng. 2021, 34, 101920. [Google Scholar] [CrossRef]
- Bayrak, F.; Oztop, H.F.; Selimefendigil, F. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Convers. Manag. 2020, 212, 112789. [Google Scholar] [CrossRef]
- Tao, M.; Zhenpeng, L.; Jiaxin, Z. Photovoltaic panel integrated with phase change materials (PV-PCM): Technology overview and materials selection. Renew. Sustain. Energy Rev. 2019, 116, 109406. [Google Scholar]
- Heim, D.; Wieprzkowicz, A. Attenuation of Temperature Fluctuations on an External Surface of the Wall by a Phase Change Material-Activated Layer. Appl. Sci. 2017, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Pournami, M.C.; Sreenath, B.; Zachariah, R. A comprehensive review on the recent advancements in PV panel cooling techniques using phase changing materials. In Proceedings of the 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Piscataway, NJ, USA, 23–25 March 2017; pp. 1–6. [Google Scholar]
- Hasan, A.; McCormack, S.J.; Huang, M.J.; Sarwar, J.; Norton, B. Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates. Sol. Energy 2015, 115, 264–276. [Google Scholar] [CrossRef]
- Clarke, J. Integrative modelling methods. Response 2001, 90, 22–63. [Google Scholar]
- Clarke, J.A.; Kelly, N.J. Integrating power flow modelling with building simulation. Energy Build. 2001, 33, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Mottillo, M.; Beausoleil-Morrison, I.; Couture, L.; Poissant, Y. A comparison and validation of two photovoltaic models. In Proceedings of the Canadian Solar Buildings Conference, Montreal, QC, Canada, 20–24 August 2006. [Google Scholar]
- Thevenard, D. Review and recommendations for improving the modelling of building integrated photovoltaic systems. In Proceedings of the Ninth International IBPSA Conference, Montréal, QC, Canada, 15–18 August 2005; pp. 1221–1228. [Google Scholar]
- Heim, D.; Wieprzkowicz, A. Positioning of an isothermal heat storage layer in a building wall exposed to the external environment. J. Build. Perform. Simul. 2016, 9, 542–554. [Google Scholar] [CrossRef]
- Heim, D. Phase-Change Material Modeling within Whole Building Dynamic Simulation. ASHRAE Trans. 2006, 112, 518–525. [Google Scholar]
- Clarke, J.A.; Kelly, N.J.; Tang, D. A Review of ESP-r’s Flexible Solution Approach and its Application to Prospective Technical Domain Developments. Adv. Build. Energy Res. 2007, 1, 227–247. [Google Scholar] [CrossRef]
- Ascencio-Vásquez, J.; Brecl, K.; Topič, M. Methodology of Köppen-Geiger-Photovoltaic climate classification and implications to worldwide mapping of PV system performance. Sol. Energy 2019, 191, 672–685. [Google Scholar] [CrossRef]
- Pernigotto, G.; Walsh, A.; Gasparella, A.; Hensen, J.L.M. Clustering of European Climates and Representative Climate Identification for Building Energy Simulation Analyses. In Proceedings of the 16th IBPSA Conference, Rome, Italy, 2–4 September 2019; pp. 4833–4840. [Google Scholar]
- EnergyPlus. Weather Data. Available online: https://www.energyplus.net/weather (accessed on 21 March 2021).
Parameter | ETICS | PV-ETICS/En-ActivETICS |
---|---|---|
External surface absorptivity α [-] | 0.22 | 0.84 |
External surface emissivity ε [-] | 0.90 | |
Thermal transmittance of the wall U [W/(m2 K)] | 0.15 |
No | Abbreviation | Country/City | K-G-P | K-G-S |
---|---|---|---|---|
1 | VNA | Austria, Vienna | DM | Dfb |
2 | MSK | Belarus, Minsk ne | EL | Dfb |
3 | PRG | Czech Republic, Prague | DM | Dfb |
4 | TLN | Estonia, Tallinn ne | EL * | Dfb |
5 | HLS | Finland, Helsinki | EL | Dfb |
6 | PRS | France, Paris | DM | Cfb |
7 | BRN | Germany, Berlin | DM | Dfb |
8 | DBC | Hungary, Debrecen | DM | Dfb |
9 | ROM | Italy, Rome ne | DM * | Csa |
10 | AMS | Netherlands, Amsterdam ne | DM | Cfb |
11 | BRG | Norway, Bergen | EL * | Dfc * |
12 | LDZ | Poland, Lodz | DM * | Dfb |
13 | LSB | Portugal, Lisbon ne | DH | Csa |
14 | BCR | Romania, Bucharest | DM | Cfb * |
15 | BRT | Slovakia, Bratislava | DM | Dfb * |
16 | MDR | Spain, Madrid ne | DH * | Bsk * |
17 | STK | Sweden, Stockholm | DL * | Dfb |
18 | GNV | Switzerland, Geneva ne | EM | Dfc * |
19 | KEV | Ukraine, Kiev ne | DM * | Dfb |
20 | LND | United Kingdom, London | DM * | Cfb |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heim, D.; Wieprzkowicz, A.; Knera, D.; Ilomets, S.; Kalamees, T.; Špitalský, Z. Towards Improving the Durability and Overall Performance of PV-ETICS by Application of a PCM Layer. Appl. Sci. 2021, 11, 4667. https://doi.org/10.3390/app11104667
Heim D, Wieprzkowicz A, Knera D, Ilomets S, Kalamees T, Špitalský Z. Towards Improving the Durability and Overall Performance of PV-ETICS by Application of a PCM Layer. Applied Sciences. 2021; 11(10):4667. https://doi.org/10.3390/app11104667
Chicago/Turabian StyleHeim, Dariusz, Anna Wieprzkowicz, Dominika Knera, Simo Ilomets, Targo Kalamees, and Zdenko Špitalský. 2021. "Towards Improving the Durability and Overall Performance of PV-ETICS by Application of a PCM Layer" Applied Sciences 11, no. 10: 4667. https://doi.org/10.3390/app11104667
APA StyleHeim, D., Wieprzkowicz, A., Knera, D., Ilomets, S., Kalamees, T., & Špitalský, Z. (2021). Towards Improving the Durability and Overall Performance of PV-ETICS by Application of a PCM Layer. Applied Sciences, 11(10), 4667. https://doi.org/10.3390/app11104667