Modeling of Ductile Fracture for SS275 Structural Steel Sheets
Abstract
:1. Introduction
2. Experimental Investigation
2.1. Test Specimen Configurations
2.2. Test Set-Up
2.3. Test Results
3. Finite Element (FE) Investigation
3.1. Description of FE Modeling
3.2. Identification of the True Stress–Strain Curves
3.3. Fracture Criterion
3.4. Calibration of Fracture Parameters
3.5. Mesh Sensitivity Analysis
3.6. Fracture Simulations
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahin, S.A. Lessons from damage to steel buildings during the Northridge earthquake. Eng. Struct. 1998, 20, 261–270. [Google Scholar] [CrossRef]
- Kuwamura, H. Fracture of steel during an earthquake—State-of-art in Japan. Eng. Struct. 1998, 20, 310–322. [Google Scholar] [CrossRef]
- Cho, Y.H.; Kim, T.S. Estimation of ultimate strength in single shear bolted connections with aluminum alloys (6061-T6). Thin-Walled Struct. 2016, 101, 43–57. [Google Scholar] [CrossRef]
- Wang, F.; Young, B.; Gardner, L. Compressive behaviour and design CFDST cross-sections with stainless steel outer tubes. J. Construct. Steel Res. 2020, 170, 105942. [Google Scholar] [CrossRef]
- Lee, H.C.; Hwang, B.K.; Kim, T.S. Ultimate strength of austenitic stainless fillet-welded connections with weld metal fracture. Thin Walled Struct. 2017, 116, 145–153. [Google Scholar] [CrossRef]
- Gurson, A.L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow and flow rules for porous ductile media. J. Eng. Mater. Technol. 1977, 99, 2–15. [Google Scholar] [CrossRef]
- Kachanov, L.M. Time of the rupture process under creep conditions. Izv. Akad. Nauk. SSSR Otd. Tekhnicheskich Nauk. 1958, 8, 26–31. (In Russian) [Google Scholar]
- Tvergaard, V. Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fract. 1981, 17, 389–407. [Google Scholar] [CrossRef]
- Rice, J.R.; Tracey, D.M. On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids. 1969, 17, 201–217. [Google Scholar] [CrossRef] [Green Version]
- ABAQUS. ABAQUS Analysis User’s Manual; Dassault Systems: Johnston, RI, USA, 2018. [Google Scholar]
- Bao, Y.B.; Wierzbicki, T. On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 2004, 46, 81–89. [Google Scholar] [CrossRef]
- Bai, Y.L.; Wierzbicki, T. A new model of metal plasticity and fracture with pressure and lode dependence. Int. J. Plasticity. 2008, 24, 1071–1096. [Google Scholar] [CrossRef]
- Xue, L. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. Int. J. Solids. Struct. 2007, 44, 5163–5181. [Google Scholar] [CrossRef] [Green Version]
- Huh, H.; Lou, Y. Prediction of ductile fracture for advanced high strength steel with a new criterion: Experiments and simulation. J. Mater. Process. Technol. 2013, 213, 1284–1302. [Google Scholar] [CrossRef]
- ASTM. Standard Test Methods for Tension Testing of Metallic Materials; ASTM E8-16; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- GOM. GOM Testing Technical Documentation Since V8 SR1: Basics of Digital Image Correlation and Strain Calculation; GOM: Braunchweig, Germany, 2016. [Google Scholar]
- Korean Standards Association. Rolled Steels for General Structure; KS D 3503; Korean Standards Association: Seoul, Korea, 2018. (In Korean) [Google Scholar]
- Song, Q.Y.; Heidarpour, A.; Zhao, X.L.; Han, L.H. Experimental and numerical investigation of ductile fracture of carbon steel structural components. J. Construct. Steel Res. 2018, 145, 425–437. [Google Scholar] [CrossRef]
- Beese, M.A.; Mohr, D. Anisotropic plasticity model coupled with Lode angle dependent strain-induced transformation kinetics law. J. Mech. Phys. Solids. 2012, 60, 1922–1940. [Google Scholar] [CrossRef]
- Wei, L.; Qin, F.; Cui, K. Prediction the stainless steel sheet fracture with mesh size effect for shell elements. Int. J. Solids. Struct. 2021, 210–211, 35–48. [Google Scholar] [CrossRef]
- Bridgman, P.W. Studies in Large Plastic Flow and Fracture; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
- Ling, Y. Uniaxial true stress-strain after necking. AMP J. Technol. 1996, 5, 37–48. [Google Scholar]
- Song, Y.; Wang, J.; Uy, B.; Li, D. Experimental behaviour and fracture prediction of austenitic stainless steel bolts under combined tension and shear. J. Construct. Steel Res. 2020, 166, 105916. [Google Scholar] [CrossRef]
- Dunand, M.; Mohr, D. Hybrid experimental-numerical analysis of basic ductile fracture experiments for sheet metals. Int. J. Solids Struct. 2010, 47, 1130–1143. [Google Scholar] [CrossRef]
- Yang, F.; Veljkovic, M. Damage model calibration for S275 and S690 steels. CE Pap. 2019, 3, 262–2671. [Google Scholar] [CrossRef] [Green Version]
- Gruben, G.; Fagerholt, E.; Hopperstad, O.S.; Borvik, T. Fracture characteristics of a cold-rolled dual-phase steel. Int. J. Mech. Solids. 2011, 30, 204–218. [Google Scholar] [CrossRef]
- Yan, S.; Zhao, A.; Wu, A. Ductile fracture simulation of constructional steels based on yield-to-fracture stress-strain relationship and micromechanism-based fracture criterion. J. Struct. Eng. 2018, 144, 04018004. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Li, G.Q.; Wang, Y.B.; Lyu, Y.F.; Li, H. Ductile fracture of high strength steel under multi-axial loading. Eng. Struct. 2020, 210, 110401. [Google Scholar] [CrossRef]
- Hai, L.T.; Wang, Y.B.; Li, G.Q.; Sun, F.F.; Wang, Y.Z. Numerical investigation on cyclic behavior of Q690 high strength steel beam-columns. J. Construct. Steel Res. 2020, 167, 105814. [Google Scholar] [CrossRef]
- Zeng, L.; Zhang, W.; Li, H. Low-cycle fatigue life prediction of I-shaped steel brace components and brace frames. Thin Walled Struct. 2021, 163, 107711. [Google Scholar] [CrossRef]
Specimen | Measured Thickness (t, mm) | Elastic Modulus (E, GPa) | Yield Stress | Tensile Strength | Elongation at Fracture (%) | |
---|---|---|---|---|---|---|
Tension-1 | 7.82 | 214.7 | 276.2 | 414.4 | 1.50 | 38.7 |
Tension-2 | 7.83 | 214.8 | 271.5 | 410.4 | 1.51 | 40.8 |
Tension-3 | 7.85 | 206.6 | 271.8 | 410.6 | 1.51 | 39.6 |
Average | 7.83 | 212.0 | 273.2 | 411.8 | 1.51 | 39.7 |
Standard deviation (%) | 0.16% | 1.81% | 0.79% | 0.45% | 0.34% | 2.17% |
Specimen | Fracture Strain | Averaged Stress Triaxiality |
---|---|---|
Tension | 1.1739 | 0.4588 |
Shear | 0.8709 | 0.0532 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.; Lee, C.; Yee, J.-J.; Kim, D.-K. Modeling of Ductile Fracture for SS275 Structural Steel Sheets. Appl. Sci. 2021, 11, 5392. https://doi.org/10.3390/app11125392
Cho Y, Lee C, Yee J-J, Kim D-K. Modeling of Ductile Fracture for SS275 Structural Steel Sheets. Applied Sciences. 2021; 11(12):5392. https://doi.org/10.3390/app11125392
Chicago/Turabian StyleCho, Yonghyun, Changkye Lee, Jurng-Jae Yee, and Dong-Keon Kim. 2021. "Modeling of Ductile Fracture for SS275 Structural Steel Sheets" Applied Sciences 11, no. 12: 5392. https://doi.org/10.3390/app11125392
APA StyleCho, Y., Lee, C., Yee, J. -J., & Kim, D. -K. (2021). Modeling of Ductile Fracture for SS275 Structural Steel Sheets. Applied Sciences, 11(12), 5392. https://doi.org/10.3390/app11125392