The Effect of Differentiating the Thermal Conductivity between Inner and Outer Walls on the Stability of a U-Bend Catalytic Heat-Recirculating Micro-Combustor: A CFD Study
Abstract
:1. Introduction
2. Mathematical Model
3. Results and Discussion
3.1. All Cordierite versus All SiC
3.1.1. Base Cases
3.1.2. Effect of the Inlet Gas Velocity
3.2. Differentiating the Thermal Conductivity between Inner and Outer Walls
3.2.1. Roles of the Inner and Outer Walls
3.2.2. Optimal Combination of Materials
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandez-Pello, A.C. Micropower generation using combustion: Issues and approaches. Proc. Combust. Inst. 2002, 29, 883–899. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.; Maruta, K. Microscale combustion: Technology development and fundamental research. Prog. Energy Combust. Sci. 2011, 37, 669–715. [Google Scholar] [CrossRef]
- Kaisare, N.S.; Vlachos, D.G. A review on microcombustion: Fundamentals, devices and applications. Prog. Energy Combust. Sci. 2012, 38, 321–359. [Google Scholar] [CrossRef]
- Federici, J.A.; Norton, D.G.; Brüggemann, T.; Voit, K.W.; Wetzel, E.D.; Vlachos, D.G. Catalytic microcombustors with integrated thermoelectric elements for portable power production. J. Power Sources 2006, 161, 1469–1478. [Google Scholar] [CrossRef]
- Yang, W.M.; Chou, S.K.; Shu, C.; Xue, H.; Li, Z.W.; Li, D.T.; Pan, J.F. Microscale combustion research for application to micro thermophotovoltaic systems. Energy Convers. Manag. 2003, 44, 2625–2634. [Google Scholar] [CrossRef]
- Zhang, C.; Najafi, K.; Bernal, L.P.; Washabaugh, P.D. Micro Combustion-Thermionic Power Generation: Feasibility, Design and Initial Results. In Proceedings of the 12th International Conference on Solid-State Sensors, Actuators and Microsystems (Digest of Technical Papers, Cat. No. 03TH8664), TRANSDUCERS’03, Boston, MA, USA, 8–12 June 2003; IEEE: New York, NY, USA, 2003. [Google Scholar]
- Jeon, S.W.; Yoon, W.J.; Jeong, M.W.; Kim, Y. Optimization of a counter-flow microchannel reactor using hydrogen assisted catalytic combustion for steam reforming of methane. Int. J. Hydrogen Energy 2014, 39, 6470–6478. [Google Scholar] [CrossRef]
- Vlachos, D.G. Microreactor engineering: Processes, detailed design and modeling. In Microfabricated Power Generation Devices: Design and Technology; Mitsos, A., Barton, P.I., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; Chapter 10; pp. 179–198. [Google Scholar]
- Norton, D.G.; Vlachos, D.G. Combustion characteristics and flame stability at the microscale: A CFD study of premixed methane/air mixtures. Chem. Eng. Sci. 2003, 58, 4871–4882. [Google Scholar] [CrossRef]
- Kaisare, N.S.; Vlachos, D.G. Optimal reactor dimensions for homogeneous combustion in small channels. Catal. Today 2007, 120, 96–106. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Zhou, J.; Zhou, J.; Wang, Z.; Cen, K. Catalytic self-sustaining combustion of the alkanes with Pt/ZSM-5 packed bed in a microscale tube. Chem. Eng. Sci. 2017, 158, 30–36. [Google Scholar] [CrossRef]
- Di Benedetto, A.; Di Sarli, V.; Russo, G. A novel catalytic-homogenous micro-combustor. Catal. Today 2009, 147, S156–S161. [Google Scholar] [CrossRef]
- Landi, G.; Di Benedetto, A.; Barbato, P.S.; Russo, G.; Di Sarli, V. Transient behavior of structured LaMnO3 catalyst during methane combustion at high pressure. Chem. Eng. Sci. 2014, 116, 350–358. [Google Scholar] [CrossRef]
- Barbato, P.S.; Di Sarli, V.; Landi, G.; Di Benedetto, A. High pressure methane catalytic combustion over novel partially coated LaMnO3-based monoliths. Chem. Eng. J. 2015, 259, 381–390. [Google Scholar] [CrossRef]
- Di Benedetto, A.; Di Sarli, V.; Russo, G. Effect of geometry on the thermal behavior of catalytic micro-combustors. Catal. Today 2010, 155, 116–122. [Google Scholar] [CrossRef]
- Regatte, V.R.; Kaisare, N.S. Propane combustion in non-adiabatic microreactors: 1. Comparison of channel and posted catalytic inserts. Chem. Eng. Sci. 2011, 66, 1123–1131. [Google Scholar] [CrossRef]
- Regatte, V.R.; Kaisare, N.S. Propane combustion in non-adiabatic microreactors: 2. Flow configuration in posted microreactors. Chem. Eng. Sci. 2011, 66, 3732–3741. [Google Scholar] [CrossRef]
- Di Sarli, V.; Trofa, M.; Di Benedetto, A. A novel catalytic micro-combustor inspired by the nasal geometry of reindeer: CFD modeling and simulation. Catalysts 2020, 10, 606. [Google Scholar] [CrossRef]
- Lloyd, S.A.; Weinberg, F.J. A burner for mixtures of very low heat content. Nature 1974, 251, 47–49. [Google Scholar] [CrossRef]
- Kuo, C.H.; Ronney, P.D. Numerical modeling of non-adiabatic heat-recirculating combustors. Proc. Combust. Inst. 2007, 31, 3277–3284. [Google Scholar] [CrossRef]
- Zhong, B.-J.; Wang, J.-H. Experimental study on premixed CH4/air mixture combustion in micro Swiss-roll combustors. Combust. Flame 2010, 157, 2222–2229. [Google Scholar] [CrossRef]
- Li, J.; Li, Q.; Shi, J.; Liu, X.; Guo, Z. Numerical study on heat recirculation in a porous micro-combustor. Combust. Flame 2016, 171, 152–161. [Google Scholar] [CrossRef]
- Kaisare, N.S.; Vlachos, D.G. Extending the region of stable homogeneous micro-combustion through forced unsteady operation. Proc. Combust. Inst. 2007, 31, 3293–3300. [Google Scholar] [CrossRef]
- Ronney, P.D. Analysis of non-adiabatic heat-recirculating combustors. Combust. Flame 2003, 135, 421–439. [Google Scholar] [CrossRef]
- Federici, J.A.; Vlachos, D.G. A computational fluid dynamics study of propane/air microflame stability in a heat recirculation reactor. Combust. Flame 2008, 153, 258–269. [Google Scholar] [CrossRef]
- Federici, J.A.; Wetzel, E.D.; Geil, B.R.; Vlachos, D.G. Single channel and heat recirculation catalytic microburners: An experimental and computational fluid dynamics study. Proc. Combust. Inst. 2009, 32, 3011–3018. [Google Scholar] [CrossRef]
- Yan, Y.; Pan, W.; Zhang, L.; Tang, W.; Chen, Y.; Li, L. Numerical study of the geometrical parameters on CH4/air premixed combustion in heat recirculation micro-combustor. Fuel 2015, 159, 45–51. [Google Scholar] [CrossRef]
- Chen, J.; Yan, L.; Song, W.; Xu, D. Effect of heat recirculation on the combustion stability of methane-air mixtures in catalytic micro-combustors. Appl. Therm. Eng. 2017, 115, 702–714. [Google Scholar] [CrossRef]
- Kunte, A.; Raghu, A.K.; Kaisare, N.S. A spiral microreactor for improved stability and performance for catalytic combustion of propane. Chem. Eng. Sci. 2018, 187, 87–97. [Google Scholar] [CrossRef]
- Scarpa, A.; Pirone, R.; Russo, G.; Vlachos, D.G. Effect of heat recirculation on the self-sustained catalytic combustion of propane/air mixtures in a quartz reactor. Combust. Flame 2009, 156, 947–953. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, H.; Pan, W.; Zhang, L.; Li, L.; Yang, Z.; Lin, C. Numerical study of effect of wall parameters on catalytic combustion characteristics of CH4/air in a heat recirculation micro-combustor. Energy Convers. Manag. 2016, 118, 474–484. [Google Scholar] [CrossRef]
- Chen, J.; Gao, X.; Yan, L.; Xu, D. Effect of wall thermal conductivity on the stability of catalytic heat-recirculating micro-combustors. Appl. Therm. Eng. 2018, 128, 849–860. [Google Scholar] [CrossRef]
- Chen, J.; Song, W.; Xu, D. Thermal management in catalytic heat-recirculating micro-combustors: A computational fluid dynamics study. Appl. Therm. Eng. 2019, 160, 114073. [Google Scholar] [CrossRef]
- Yedala, N.; Raghu, A.K.; Kaisare, N.S. A 3D CFD study of homogeneous-catalytic combustion of hydrogen in a spiral microreactor. Combust. Flame 2019, 206, 441–450. [Google Scholar] [CrossRef]
- Chen, J.; Song, W.; Gao, X.; Xu, D. Hetero-/homogeneous combustion and flame stability of fuel-lean propane–air mixtures over platinum in catalytic micro-combustors. Appl. Therm. Eng. 2016, 100, 932–943. [Google Scholar] [CrossRef]
- Di Benedetto, A.; Di Sarli, V. CFD modeling and simulation of a catalytic micro-monolith. Int. J. Chem. React. Eng. 2011, 9, A21. [Google Scholar] [CrossRef]
- Demoulin, O.; Le Clef, B.; Navez, M.; Ruiz, P. Combustion of methane, ethane and propane and of mixtures of methane with ethane or propane on Pd/γ-Al2O3 catalysts. Appl. Catal. A Gen. 2008, 344, 1–9. [Google Scholar] [CrossRef]
- Westbrook, C.K.; Dryer, F.L. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 1981, 27, 31–43. [Google Scholar] [CrossRef]
- Spadaccini, C.M.; Peck, J.; Waitz, I.A. Catalytic combustion systems for microscale gas turbine engines. J. Eng. Gas Turbines Power 2007, 129, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Canu, P. Simulation and interpretation of catalytic combustion experimental data. Catal. Today 2001, 64, 239–252. [Google Scholar] [CrossRef]
- Zuo, W.; E, J.; Lin, R. Numerical investigations on an improved counterflow double-channel micro combustor fueled with hydrogen for enhancing thermal performance. Energy Convers. Manag. 2018, 159, 163–174. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Channel gap size, d [mm] | 0.6 |
Wall thickness, δ [mm] | 0.2 |
Length of the micro-combustor, L [mm] | 12.5 |
Parameter | Value |
---|---|
Inlet gas velocity, Vin [m/s] | 0.12–24.5 |
Inlet gas temperature [K] | 300 |
Inlet fuel equivalence ratio [-] | 0.5 |
(Inlet) Reynolds number, Re [-] | 4.6–937.5 |
Thermal Conductivity of the Outer Wall [W/m K] | Thermal Conductivity of the Inner Wall [W/m K] | Nomenclature |
---|---|---|
2 | 2 | All Cordierite |
32.8 | 32.8 | All SiC |
2 | 32.8 | Cordierite + SiC |
32.8 | 2 | SiC + Cordierite |
23.3 | 23.3 | As SiC + Cordierite 1 |
10 | 10 | All Stainless Steel |
10 | 2 | Stainless Steel + Cordierite |
50 | 50 | All Cast Iron |
50 | 2 | Cast Iron + Cordierite |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Sarli, V. The Effect of Differentiating the Thermal Conductivity between Inner and Outer Walls on the Stability of a U-Bend Catalytic Heat-Recirculating Micro-Combustor: A CFD Study. Appl. Sci. 2021, 11, 5418. https://doi.org/10.3390/app11125418
Di Sarli V. The Effect of Differentiating the Thermal Conductivity between Inner and Outer Walls on the Stability of a U-Bend Catalytic Heat-Recirculating Micro-Combustor: A CFD Study. Applied Sciences. 2021; 11(12):5418. https://doi.org/10.3390/app11125418
Chicago/Turabian StyleDi Sarli, Valeria. 2021. "The Effect of Differentiating the Thermal Conductivity between Inner and Outer Walls on the Stability of a U-Bend Catalytic Heat-Recirculating Micro-Combustor: A CFD Study" Applied Sciences 11, no. 12: 5418. https://doi.org/10.3390/app11125418
APA StyleDi Sarli, V. (2021). The Effect of Differentiating the Thermal Conductivity between Inner and Outer Walls on the Stability of a U-Bend Catalytic Heat-Recirculating Micro-Combustor: A CFD Study. Applied Sciences, 11(12), 5418. https://doi.org/10.3390/app11125418